Class: Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig
- Inherits:
-
Object
- Object
- Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/aiplatform/v1/feature_view.rb
Overview
Configuration for vector indexing.
Defined Under Namespace
Modules: DistanceMeasureType Classes: BruteForceConfig, TreeAHConfig
Instance Attribute Summary collapse
-
#brute_force_config ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig
Optional.
-
#crowding_column ⇒ ::String
Optional.
-
#distance_measure_type ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType
Optional.
-
#embedding_column ⇒ ::String
Optional.
-
#embedding_dimension ⇒ ::Integer
Optional.
-
#filter_columns ⇒ ::Array<::String>
Optional.
-
#tree_ah_config ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig
Optional.
Instance Attribute Details
#brute_force_config ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig
Returns Optional. Configuration options for using brute force search, which simply implements the standard linear search in the database for each query. It is primarily meant for benchmarking and to generate the ground truth for approximate search.
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 149 class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end |
#crowding_column ⇒ ::String
Returns Optional. Column of crowding. This column contains crowding attribute which is a constraint on a neighbor list produced by FeatureOnlineStoreService.SearchNearestEntities to diversify search results. If NearestNeighborQuery.per_crowding_attribute_neighbor_count is set to K in SearchNearestEntitiesRequest, it's guaranteed that no more than K entities of the same crowding attribute are returned in the response.
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 149 class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end |
#distance_measure_type ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType
Returns Optional. The distance measure used in nearest neighbor search.
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 149 class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end |
#embedding_column ⇒ ::String
Returns Optional. Column of embedding. This column contains the source data to create index for vector search. embedding_column must be set when using vector search.
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 149 class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end |
#embedding_dimension ⇒ ::Integer
Returns Optional. The number of dimensions of the input embedding.
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 149 class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end |
#filter_columns ⇒ ::Array<::String>
Returns Optional. Columns of features that're used to filter vector search results.
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 149 class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end |
#tree_ah_config ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig
Returns Optional. Configuration options for the tree-AH algorithm (Shallow tree
- Asymmetric Hashing). Please refer to this paper for more details: https://arxiv.org/abs/1908.10396.
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 149 class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end |