Class: Google::Cloud::AIPlatform::V1::FeatureView
- Inherits:
-
Object
- Object
- Google::Cloud::AIPlatform::V1::FeatureView
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/aiplatform/v1/feature_view.rb
Overview
FeatureView is representation of values that the FeatureOnlineStore will serve based on its syncConfig.
Defined Under Namespace
Classes: BigQuerySource, FeatureRegistrySource, IndexConfig, LabelsEntry, SyncConfig, VertexRagSource
Instance Attribute Summary collapse
-
#big_query_source ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::BigQuerySource
Optional.
-
#create_time ⇒ ::Google::Protobuf::Timestamp
readonly
Output only.
-
#etag ⇒ ::String
Optional.
-
#feature_registry_source ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::FeatureRegistrySource
Optional.
-
#index_config ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig
Optional.
-
#labels ⇒ ::Google::Protobuf::Map{::String => ::String}
Optional.
-
#name ⇒ ::String
Identifier.
-
#satisfies_pzi ⇒ ::Boolean
readonly
Output only.
-
#satisfies_pzs ⇒ ::Boolean
readonly
Output only.
-
#sync_config ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::SyncConfig
Configures when data is to be synced/updated for this FeatureView.
-
#update_time ⇒ ::Google::Protobuf::Timestamp
readonly
Output only.
-
#vertex_rag_source ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::VertexRagSource
Optional.
Instance Attribute Details
#big_query_source ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::BigQuerySource
Returns Optional. Configures how data is supposed to be extracted from a BigQuery source to be loaded onto the FeatureOnlineStore.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 81 class FeatureView include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view URI that will be materialized on each sync # trigger based on FeatureView.SyncConfig. # @!attribute [rw] entity_id_columns # @return [::Array<::String>] # Required. Columns to construct entity_id / row keys. class BigQuerySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for Sync. Only one option is set. # @!attribute [rw] cron # @return [::String] # Cron schedule (https://en.wikipedia.org/wiki/Cron) to launch scheduled # runs. To explicitly set a timezone to the cron tab, apply a prefix in # the cron tab: "CRON_TZ=$\\{IANA_TIME_ZONE}" or "TZ=$\\{IANA_TIME_ZONE}". # The $\\{IANA_TIME_ZONE} may only be a valid string from IANA time zone # database. For example, "CRON_TZ=America/New_York 1 * * * *", or # "TZ=America/New_York 1 * * * *". class SyncConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for vector indexing. # @!attribute [rw] tree_ah_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig] # Optional. Configuration options for the tree-AH algorithm (Shallow tree # + Asymmetric Hashing). Please refer to this paper for more details: # https://arxiv.org/abs/1908.10396 # @!attribute [rw] brute_force_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig] # Optional. Configuration options for using brute force search, which # simply implements the standard linear search in the database for each # query. It is primarily meant for benchmarking and to generate the # ground truth for approximate search. # @!attribute [rw] embedding_column # @return [::String] # Optional. Column of embedding. This column contains the source data to # create index for vector search. embedding_column must be set when using # vector search. # @!attribute [rw] filter_columns # @return [::Array<::String>] # Optional. Columns of features that're used to filter vector search # results. # @!attribute [rw] crowding_column # @return [::String] # Optional. Column of crowding. This column contains crowding attribute # which is a constraint on a neighbor list produced by # {::Google::Cloud::AIPlatform::V1::FeatureOnlineStoreService::Client#search_nearest_entities FeatureOnlineStoreService.SearchNearestEntities} # to diversify search results. If # {::Google::Cloud::AIPlatform::V1::NearestNeighborQuery#per_crowding_attribute_neighbor_count NearestNeighborQuery.per_crowding_attribute_neighbor_count} # is set to K in # {::Google::Cloud::AIPlatform::V1::SearchNearestEntitiesRequest SearchNearestEntitiesRequest}, # it's guaranteed that no more than K entities of the same crowding # attribute are returned in the response. # @!attribute [rw] embedding_dimension # @return [::Integer] # Optional. The number of dimensions of the input embedding. # @!attribute [rw] distance_measure_type # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType] # Optional. The distance measure used in nearest neighbor search. class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end # A Feature Registry source for features that need to be synced to Online # Store. # @!attribute [rw] feature_groups # @return [::Array<::Google::Cloud::AIPlatform::V1::FeatureView::FeatureRegistrySource::FeatureGroup>] # Required. List of features that need to be synced to Online Store. # @!attribute [rw] project_number # @return [::Integer] # Optional. The project number of the parent project of the Feature Groups. class FeatureRegistrySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Features belonging to a single feature group that will be # synced to Online Store. # @!attribute [rw] feature_group_id # @return [::String] # Required. Identifier of the feature group. # @!attribute [rw] feature_ids # @return [::Array<::String>] # Required. Identifiers of features under the feature group. class FeatureGroup include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # A Vertex Rag source for features that need to be synced to Online # Store. # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view/table URI that will be materialized on each # manual sync trigger. The table/view is expected to have the following # columns and types at least: # - `corpus_id` (STRING, NULLABLE/REQUIRED) # - `file_id` (STRING, NULLABLE/REQUIRED) # - `chunk_id` (STRING, NULLABLE/REQUIRED) # - `chunk_data_type` (STRING, NULLABLE/REQUIRED) # - `chunk_data` (STRING, NULLABLE/REQUIRED) # - `embeddings` (FLOAT, REPEATED) # - `file_original_uri` (STRING, NULLABLE/REQUIRED) # @!attribute [rw] rag_corpus_id # @return [::Integer] # Optional. The RAG corpus id corresponding to this FeatureView. class VertexRagSource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#create_time ⇒ ::Google::Protobuf::Timestamp (readonly)
Returns Output only. Timestamp when this FeatureView was created.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 81 class FeatureView include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view URI that will be materialized on each sync # trigger based on FeatureView.SyncConfig. # @!attribute [rw] entity_id_columns # @return [::Array<::String>] # Required. Columns to construct entity_id / row keys. class BigQuerySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for Sync. Only one option is set. # @!attribute [rw] cron # @return [::String] # Cron schedule (https://en.wikipedia.org/wiki/Cron) to launch scheduled # runs. To explicitly set a timezone to the cron tab, apply a prefix in # the cron tab: "CRON_TZ=$\\{IANA_TIME_ZONE}" or "TZ=$\\{IANA_TIME_ZONE}". # The $\\{IANA_TIME_ZONE} may only be a valid string from IANA time zone # database. For example, "CRON_TZ=America/New_York 1 * * * *", or # "TZ=America/New_York 1 * * * *". class SyncConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for vector indexing. # @!attribute [rw] tree_ah_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig] # Optional. Configuration options for the tree-AH algorithm (Shallow tree # + Asymmetric Hashing). Please refer to this paper for more details: # https://arxiv.org/abs/1908.10396 # @!attribute [rw] brute_force_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig] # Optional. Configuration options for using brute force search, which # simply implements the standard linear search in the database for each # query. It is primarily meant for benchmarking and to generate the # ground truth for approximate search. # @!attribute [rw] embedding_column # @return [::String] # Optional. Column of embedding. This column contains the source data to # create index for vector search. embedding_column must be set when using # vector search. # @!attribute [rw] filter_columns # @return [::Array<::String>] # Optional. Columns of features that're used to filter vector search # results. # @!attribute [rw] crowding_column # @return [::String] # Optional. Column of crowding. This column contains crowding attribute # which is a constraint on a neighbor list produced by # {::Google::Cloud::AIPlatform::V1::FeatureOnlineStoreService::Client#search_nearest_entities FeatureOnlineStoreService.SearchNearestEntities} # to diversify search results. If # {::Google::Cloud::AIPlatform::V1::NearestNeighborQuery#per_crowding_attribute_neighbor_count NearestNeighborQuery.per_crowding_attribute_neighbor_count} # is set to K in # {::Google::Cloud::AIPlatform::V1::SearchNearestEntitiesRequest SearchNearestEntitiesRequest}, # it's guaranteed that no more than K entities of the same crowding # attribute are returned in the response. # @!attribute [rw] embedding_dimension # @return [::Integer] # Optional. The number of dimensions of the input embedding. # @!attribute [rw] distance_measure_type # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType] # Optional. The distance measure used in nearest neighbor search. class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end # A Feature Registry source for features that need to be synced to Online # Store. # @!attribute [rw] feature_groups # @return [::Array<::Google::Cloud::AIPlatform::V1::FeatureView::FeatureRegistrySource::FeatureGroup>] # Required. List of features that need to be synced to Online Store. # @!attribute [rw] project_number # @return [::Integer] # Optional. The project number of the parent project of the Feature Groups. class FeatureRegistrySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Features belonging to a single feature group that will be # synced to Online Store. # @!attribute [rw] feature_group_id # @return [::String] # Required. Identifier of the feature group. # @!attribute [rw] feature_ids # @return [::Array<::String>] # Required. Identifiers of features under the feature group. class FeatureGroup include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # A Vertex Rag source for features that need to be synced to Online # Store. # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view/table URI that will be materialized on each # manual sync trigger. The table/view is expected to have the following # columns and types at least: # - `corpus_id` (STRING, NULLABLE/REQUIRED) # - `file_id` (STRING, NULLABLE/REQUIRED) # - `chunk_id` (STRING, NULLABLE/REQUIRED) # - `chunk_data_type` (STRING, NULLABLE/REQUIRED) # - `chunk_data` (STRING, NULLABLE/REQUIRED) # - `embeddings` (FLOAT, REPEATED) # - `file_original_uri` (STRING, NULLABLE/REQUIRED) # @!attribute [rw] rag_corpus_id # @return [::Integer] # Optional. The RAG corpus id corresponding to this FeatureView. class VertexRagSource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#etag ⇒ ::String
Returns Optional. Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 81 class FeatureView include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view URI that will be materialized on each sync # trigger based on FeatureView.SyncConfig. # @!attribute [rw] entity_id_columns # @return [::Array<::String>] # Required. Columns to construct entity_id / row keys. class BigQuerySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for Sync. Only one option is set. # @!attribute [rw] cron # @return [::String] # Cron schedule (https://en.wikipedia.org/wiki/Cron) to launch scheduled # runs. To explicitly set a timezone to the cron tab, apply a prefix in # the cron tab: "CRON_TZ=$\\{IANA_TIME_ZONE}" or "TZ=$\\{IANA_TIME_ZONE}". # The $\\{IANA_TIME_ZONE} may only be a valid string from IANA time zone # database. For example, "CRON_TZ=America/New_York 1 * * * *", or # "TZ=America/New_York 1 * * * *". class SyncConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for vector indexing. # @!attribute [rw] tree_ah_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig] # Optional. Configuration options for the tree-AH algorithm (Shallow tree # + Asymmetric Hashing). Please refer to this paper for more details: # https://arxiv.org/abs/1908.10396 # @!attribute [rw] brute_force_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig] # Optional. Configuration options for using brute force search, which # simply implements the standard linear search in the database for each # query. It is primarily meant for benchmarking and to generate the # ground truth for approximate search. # @!attribute [rw] embedding_column # @return [::String] # Optional. Column of embedding. This column contains the source data to # create index for vector search. embedding_column must be set when using # vector search. # @!attribute [rw] filter_columns # @return [::Array<::String>] # Optional. Columns of features that're used to filter vector search # results. # @!attribute [rw] crowding_column # @return [::String] # Optional. Column of crowding. This column contains crowding attribute # which is a constraint on a neighbor list produced by # {::Google::Cloud::AIPlatform::V1::FeatureOnlineStoreService::Client#search_nearest_entities FeatureOnlineStoreService.SearchNearestEntities} # to diversify search results. If # {::Google::Cloud::AIPlatform::V1::NearestNeighborQuery#per_crowding_attribute_neighbor_count NearestNeighborQuery.per_crowding_attribute_neighbor_count} # is set to K in # {::Google::Cloud::AIPlatform::V1::SearchNearestEntitiesRequest SearchNearestEntitiesRequest}, # it's guaranteed that no more than K entities of the same crowding # attribute are returned in the response. # @!attribute [rw] embedding_dimension # @return [::Integer] # Optional. The number of dimensions of the input embedding. # @!attribute [rw] distance_measure_type # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType] # Optional. The distance measure used in nearest neighbor search. class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end # A Feature Registry source for features that need to be synced to Online # Store. # @!attribute [rw] feature_groups # @return [::Array<::Google::Cloud::AIPlatform::V1::FeatureView::FeatureRegistrySource::FeatureGroup>] # Required. List of features that need to be synced to Online Store. # @!attribute [rw] project_number # @return [::Integer] # Optional. The project number of the parent project of the Feature Groups. class FeatureRegistrySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Features belonging to a single feature group that will be # synced to Online Store. # @!attribute [rw] feature_group_id # @return [::String] # Required. Identifier of the feature group. # @!attribute [rw] feature_ids # @return [::Array<::String>] # Required. Identifiers of features under the feature group. class FeatureGroup include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # A Vertex Rag source for features that need to be synced to Online # Store. # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view/table URI that will be materialized on each # manual sync trigger. The table/view is expected to have the following # columns and types at least: # - `corpus_id` (STRING, NULLABLE/REQUIRED) # - `file_id` (STRING, NULLABLE/REQUIRED) # - `chunk_id` (STRING, NULLABLE/REQUIRED) # - `chunk_data_type` (STRING, NULLABLE/REQUIRED) # - `chunk_data` (STRING, NULLABLE/REQUIRED) # - `embeddings` (FLOAT, REPEATED) # - `file_original_uri` (STRING, NULLABLE/REQUIRED) # @!attribute [rw] rag_corpus_id # @return [::Integer] # Optional. The RAG corpus id corresponding to this FeatureView. class VertexRagSource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#feature_registry_source ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::FeatureRegistrySource
Returns Optional. Configures the features from a Feature Registry source that need to be loaded onto the FeatureOnlineStore.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 81 class FeatureView include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view URI that will be materialized on each sync # trigger based on FeatureView.SyncConfig. # @!attribute [rw] entity_id_columns # @return [::Array<::String>] # Required. Columns to construct entity_id / row keys. class BigQuerySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for Sync. Only one option is set. # @!attribute [rw] cron # @return [::String] # Cron schedule (https://en.wikipedia.org/wiki/Cron) to launch scheduled # runs. To explicitly set a timezone to the cron tab, apply a prefix in # the cron tab: "CRON_TZ=$\\{IANA_TIME_ZONE}" or "TZ=$\\{IANA_TIME_ZONE}". # The $\\{IANA_TIME_ZONE} may only be a valid string from IANA time zone # database. For example, "CRON_TZ=America/New_York 1 * * * *", or # "TZ=America/New_York 1 * * * *". class SyncConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for vector indexing. # @!attribute [rw] tree_ah_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig] # Optional. Configuration options for the tree-AH algorithm (Shallow tree # + Asymmetric Hashing). Please refer to this paper for more details: # https://arxiv.org/abs/1908.10396 # @!attribute [rw] brute_force_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig] # Optional. Configuration options for using brute force search, which # simply implements the standard linear search in the database for each # query. It is primarily meant for benchmarking and to generate the # ground truth for approximate search. # @!attribute [rw] embedding_column # @return [::String] # Optional. Column of embedding. This column contains the source data to # create index for vector search. embedding_column must be set when using # vector search. # @!attribute [rw] filter_columns # @return [::Array<::String>] # Optional. Columns of features that're used to filter vector search # results. # @!attribute [rw] crowding_column # @return [::String] # Optional. Column of crowding. This column contains crowding attribute # which is a constraint on a neighbor list produced by # {::Google::Cloud::AIPlatform::V1::FeatureOnlineStoreService::Client#search_nearest_entities FeatureOnlineStoreService.SearchNearestEntities} # to diversify search results. If # {::Google::Cloud::AIPlatform::V1::NearestNeighborQuery#per_crowding_attribute_neighbor_count NearestNeighborQuery.per_crowding_attribute_neighbor_count} # is set to K in # {::Google::Cloud::AIPlatform::V1::SearchNearestEntitiesRequest SearchNearestEntitiesRequest}, # it's guaranteed that no more than K entities of the same crowding # attribute are returned in the response. # @!attribute [rw] embedding_dimension # @return [::Integer] # Optional. The number of dimensions of the input embedding. # @!attribute [rw] distance_measure_type # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType] # Optional. The distance measure used in nearest neighbor search. class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end # A Feature Registry source for features that need to be synced to Online # Store. # @!attribute [rw] feature_groups # @return [::Array<::Google::Cloud::AIPlatform::V1::FeatureView::FeatureRegistrySource::FeatureGroup>] # Required. List of features that need to be synced to Online Store. # @!attribute [rw] project_number # @return [::Integer] # Optional. The project number of the parent project of the Feature Groups. class FeatureRegistrySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Features belonging to a single feature group that will be # synced to Online Store. # @!attribute [rw] feature_group_id # @return [::String] # Required. Identifier of the feature group. # @!attribute [rw] feature_ids # @return [::Array<::String>] # Required. Identifiers of features under the feature group. class FeatureGroup include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # A Vertex Rag source for features that need to be synced to Online # Store. # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view/table URI that will be materialized on each # manual sync trigger. The table/view is expected to have the following # columns and types at least: # - `corpus_id` (STRING, NULLABLE/REQUIRED) # - `file_id` (STRING, NULLABLE/REQUIRED) # - `chunk_id` (STRING, NULLABLE/REQUIRED) # - `chunk_data_type` (STRING, NULLABLE/REQUIRED) # - `chunk_data` (STRING, NULLABLE/REQUIRED) # - `embeddings` (FLOAT, REPEATED) # - `file_original_uri` (STRING, NULLABLE/REQUIRED) # @!attribute [rw] rag_corpus_id # @return [::Integer] # Optional. The RAG corpus id corresponding to this FeatureView. class VertexRagSource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#index_config ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig
Returns Optional. Configuration for index preparation for vector search. It contains the required configurations to create an index from source data, so that approximate nearest neighbor (a.k.a ANN) algorithms search can be performed during online serving.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 81 class FeatureView include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view URI that will be materialized on each sync # trigger based on FeatureView.SyncConfig. # @!attribute [rw] entity_id_columns # @return [::Array<::String>] # Required. Columns to construct entity_id / row keys. class BigQuerySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for Sync. Only one option is set. # @!attribute [rw] cron # @return [::String] # Cron schedule (https://en.wikipedia.org/wiki/Cron) to launch scheduled # runs. To explicitly set a timezone to the cron tab, apply a prefix in # the cron tab: "CRON_TZ=$\\{IANA_TIME_ZONE}" or "TZ=$\\{IANA_TIME_ZONE}". # The $\\{IANA_TIME_ZONE} may only be a valid string from IANA time zone # database. For example, "CRON_TZ=America/New_York 1 * * * *", or # "TZ=America/New_York 1 * * * *". class SyncConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for vector indexing. # @!attribute [rw] tree_ah_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig] # Optional. Configuration options for the tree-AH algorithm (Shallow tree # + Asymmetric Hashing). Please refer to this paper for more details: # https://arxiv.org/abs/1908.10396 # @!attribute [rw] brute_force_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig] # Optional. Configuration options for using brute force search, which # simply implements the standard linear search in the database for each # query. It is primarily meant for benchmarking and to generate the # ground truth for approximate search. # @!attribute [rw] embedding_column # @return [::String] # Optional. Column of embedding. This column contains the source data to # create index for vector search. embedding_column must be set when using # vector search. # @!attribute [rw] filter_columns # @return [::Array<::String>] # Optional. Columns of features that're used to filter vector search # results. # @!attribute [rw] crowding_column # @return [::String] # Optional. Column of crowding. This column contains crowding attribute # which is a constraint on a neighbor list produced by # {::Google::Cloud::AIPlatform::V1::FeatureOnlineStoreService::Client#search_nearest_entities FeatureOnlineStoreService.SearchNearestEntities} # to diversify search results. If # {::Google::Cloud::AIPlatform::V1::NearestNeighborQuery#per_crowding_attribute_neighbor_count NearestNeighborQuery.per_crowding_attribute_neighbor_count} # is set to K in # {::Google::Cloud::AIPlatform::V1::SearchNearestEntitiesRequest SearchNearestEntitiesRequest}, # it's guaranteed that no more than K entities of the same crowding # attribute are returned in the response. # @!attribute [rw] embedding_dimension # @return [::Integer] # Optional. The number of dimensions of the input embedding. # @!attribute [rw] distance_measure_type # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType] # Optional. The distance measure used in nearest neighbor search. class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end # A Feature Registry source for features that need to be synced to Online # Store. # @!attribute [rw] feature_groups # @return [::Array<::Google::Cloud::AIPlatform::V1::FeatureView::FeatureRegistrySource::FeatureGroup>] # Required. List of features that need to be synced to Online Store. # @!attribute [rw] project_number # @return [::Integer] # Optional. The project number of the parent project of the Feature Groups. class FeatureRegistrySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Features belonging to a single feature group that will be # synced to Online Store. # @!attribute [rw] feature_group_id # @return [::String] # Required. Identifier of the feature group. # @!attribute [rw] feature_ids # @return [::Array<::String>] # Required. Identifiers of features under the feature group. class FeatureGroup include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # A Vertex Rag source for features that need to be synced to Online # Store. # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view/table URI that will be materialized on each # manual sync trigger. The table/view is expected to have the following # columns and types at least: # - `corpus_id` (STRING, NULLABLE/REQUIRED) # - `file_id` (STRING, NULLABLE/REQUIRED) # - `chunk_id` (STRING, NULLABLE/REQUIRED) # - `chunk_data_type` (STRING, NULLABLE/REQUIRED) # - `chunk_data` (STRING, NULLABLE/REQUIRED) # - `embeddings` (FLOAT, REPEATED) # - `file_original_uri` (STRING, NULLABLE/REQUIRED) # @!attribute [rw] rag_corpus_id # @return [::Integer] # Optional. The RAG corpus id corresponding to this FeatureView. class VertexRagSource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#labels ⇒ ::Google::Protobuf::Map{::String => ::String}
Returns Optional. The labels with user-defined metadata to organize your FeatureViews.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information on and examples of labels. No more than 64 user labels can be associated with one FeatureOnlineStore(System labels are excluded)." System reserved label keys are prefixed with "aiplatform.googleapis.com/" and are immutable.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 81 class FeatureView include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view URI that will be materialized on each sync # trigger based on FeatureView.SyncConfig. # @!attribute [rw] entity_id_columns # @return [::Array<::String>] # Required. Columns to construct entity_id / row keys. class BigQuerySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for Sync. Only one option is set. # @!attribute [rw] cron # @return [::String] # Cron schedule (https://en.wikipedia.org/wiki/Cron) to launch scheduled # runs. To explicitly set a timezone to the cron tab, apply a prefix in # the cron tab: "CRON_TZ=$\\{IANA_TIME_ZONE}" or "TZ=$\\{IANA_TIME_ZONE}". # The $\\{IANA_TIME_ZONE} may only be a valid string from IANA time zone # database. For example, "CRON_TZ=America/New_York 1 * * * *", or # "TZ=America/New_York 1 * * * *". class SyncConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for vector indexing. # @!attribute [rw] tree_ah_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig] # Optional. Configuration options for the tree-AH algorithm (Shallow tree # + Asymmetric Hashing). Please refer to this paper for more details: # https://arxiv.org/abs/1908.10396 # @!attribute [rw] brute_force_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig] # Optional. Configuration options for using brute force search, which # simply implements the standard linear search in the database for each # query. It is primarily meant for benchmarking and to generate the # ground truth for approximate search. # @!attribute [rw] embedding_column # @return [::String] # Optional. Column of embedding. This column contains the source data to # create index for vector search. embedding_column must be set when using # vector search. # @!attribute [rw] filter_columns # @return [::Array<::String>] # Optional. Columns of features that're used to filter vector search # results. # @!attribute [rw] crowding_column # @return [::String] # Optional. Column of crowding. This column contains crowding attribute # which is a constraint on a neighbor list produced by # {::Google::Cloud::AIPlatform::V1::FeatureOnlineStoreService::Client#search_nearest_entities FeatureOnlineStoreService.SearchNearestEntities} # to diversify search results. If # {::Google::Cloud::AIPlatform::V1::NearestNeighborQuery#per_crowding_attribute_neighbor_count NearestNeighborQuery.per_crowding_attribute_neighbor_count} # is set to K in # {::Google::Cloud::AIPlatform::V1::SearchNearestEntitiesRequest SearchNearestEntitiesRequest}, # it's guaranteed that no more than K entities of the same crowding # attribute are returned in the response. # @!attribute [rw] embedding_dimension # @return [::Integer] # Optional. The number of dimensions of the input embedding. # @!attribute [rw] distance_measure_type # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType] # Optional. The distance measure used in nearest neighbor search. class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end # A Feature Registry source for features that need to be synced to Online # Store. # @!attribute [rw] feature_groups # @return [::Array<::Google::Cloud::AIPlatform::V1::FeatureView::FeatureRegistrySource::FeatureGroup>] # Required. List of features that need to be synced to Online Store. # @!attribute [rw] project_number # @return [::Integer] # Optional. The project number of the parent project of the Feature Groups. class FeatureRegistrySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Features belonging to a single feature group that will be # synced to Online Store. # @!attribute [rw] feature_group_id # @return [::String] # Required. Identifier of the feature group. # @!attribute [rw] feature_ids # @return [::Array<::String>] # Required. Identifiers of features under the feature group. class FeatureGroup include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # A Vertex Rag source for features that need to be synced to Online # Store. # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view/table URI that will be materialized on each # manual sync trigger. The table/view is expected to have the following # columns and types at least: # - `corpus_id` (STRING, NULLABLE/REQUIRED) # - `file_id` (STRING, NULLABLE/REQUIRED) # - `chunk_id` (STRING, NULLABLE/REQUIRED) # - `chunk_data_type` (STRING, NULLABLE/REQUIRED) # - `chunk_data` (STRING, NULLABLE/REQUIRED) # - `embeddings` (FLOAT, REPEATED) # - `file_original_uri` (STRING, NULLABLE/REQUIRED) # @!attribute [rw] rag_corpus_id # @return [::Integer] # Optional. The RAG corpus id corresponding to this FeatureView. class VertexRagSource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#name ⇒ ::String
Returns Identifier. Name of the FeatureView. Format:
projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}/featureViews/{feature_view}
.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 81 class FeatureView include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view URI that will be materialized on each sync # trigger based on FeatureView.SyncConfig. # @!attribute [rw] entity_id_columns # @return [::Array<::String>] # Required. Columns to construct entity_id / row keys. class BigQuerySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for Sync. Only one option is set. # @!attribute [rw] cron # @return [::String] # Cron schedule (https://en.wikipedia.org/wiki/Cron) to launch scheduled # runs. To explicitly set a timezone to the cron tab, apply a prefix in # the cron tab: "CRON_TZ=$\\{IANA_TIME_ZONE}" or "TZ=$\\{IANA_TIME_ZONE}". # The $\\{IANA_TIME_ZONE} may only be a valid string from IANA time zone # database. For example, "CRON_TZ=America/New_York 1 * * * *", or # "TZ=America/New_York 1 * * * *". class SyncConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for vector indexing. # @!attribute [rw] tree_ah_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig] # Optional. Configuration options for the tree-AH algorithm (Shallow tree # + Asymmetric Hashing). Please refer to this paper for more details: # https://arxiv.org/abs/1908.10396 # @!attribute [rw] brute_force_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig] # Optional. Configuration options for using brute force search, which # simply implements the standard linear search in the database for each # query. It is primarily meant for benchmarking and to generate the # ground truth for approximate search. # @!attribute [rw] embedding_column # @return [::String] # Optional. Column of embedding. This column contains the source data to # create index for vector search. embedding_column must be set when using # vector search. # @!attribute [rw] filter_columns # @return [::Array<::String>] # Optional. Columns of features that're used to filter vector search # results. # @!attribute [rw] crowding_column # @return [::String] # Optional. Column of crowding. This column contains crowding attribute # which is a constraint on a neighbor list produced by # {::Google::Cloud::AIPlatform::V1::FeatureOnlineStoreService::Client#search_nearest_entities FeatureOnlineStoreService.SearchNearestEntities} # to diversify search results. If # {::Google::Cloud::AIPlatform::V1::NearestNeighborQuery#per_crowding_attribute_neighbor_count NearestNeighborQuery.per_crowding_attribute_neighbor_count} # is set to K in # {::Google::Cloud::AIPlatform::V1::SearchNearestEntitiesRequest SearchNearestEntitiesRequest}, # it's guaranteed that no more than K entities of the same crowding # attribute are returned in the response. # @!attribute [rw] embedding_dimension # @return [::Integer] # Optional. The number of dimensions of the input embedding. # @!attribute [rw] distance_measure_type # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType] # Optional. The distance measure used in nearest neighbor search. class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end # A Feature Registry source for features that need to be synced to Online # Store. # @!attribute [rw] feature_groups # @return [::Array<::Google::Cloud::AIPlatform::V1::FeatureView::FeatureRegistrySource::FeatureGroup>] # Required. List of features that need to be synced to Online Store. # @!attribute [rw] project_number # @return [::Integer] # Optional. The project number of the parent project of the Feature Groups. class FeatureRegistrySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Features belonging to a single feature group that will be # synced to Online Store. # @!attribute [rw] feature_group_id # @return [::String] # Required. Identifier of the feature group. # @!attribute [rw] feature_ids # @return [::Array<::String>] # Required. Identifiers of features under the feature group. class FeatureGroup include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # A Vertex Rag source for features that need to be synced to Online # Store. # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view/table URI that will be materialized on each # manual sync trigger. The table/view is expected to have the following # columns and types at least: # - `corpus_id` (STRING, NULLABLE/REQUIRED) # - `file_id` (STRING, NULLABLE/REQUIRED) # - `chunk_id` (STRING, NULLABLE/REQUIRED) # - `chunk_data_type` (STRING, NULLABLE/REQUIRED) # - `chunk_data` (STRING, NULLABLE/REQUIRED) # - `embeddings` (FLOAT, REPEATED) # - `file_original_uri` (STRING, NULLABLE/REQUIRED) # @!attribute [rw] rag_corpus_id # @return [::Integer] # Optional. The RAG corpus id corresponding to this FeatureView. class VertexRagSource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#satisfies_pzi ⇒ ::Boolean (readonly)
Returns Output only. Reserved for future use.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 81 class FeatureView include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view URI that will be materialized on each sync # trigger based on FeatureView.SyncConfig. # @!attribute [rw] entity_id_columns # @return [::Array<::String>] # Required. Columns to construct entity_id / row keys. class BigQuerySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for Sync. Only one option is set. # @!attribute [rw] cron # @return [::String] # Cron schedule (https://en.wikipedia.org/wiki/Cron) to launch scheduled # runs. To explicitly set a timezone to the cron tab, apply a prefix in # the cron tab: "CRON_TZ=$\\{IANA_TIME_ZONE}" or "TZ=$\\{IANA_TIME_ZONE}". # The $\\{IANA_TIME_ZONE} may only be a valid string from IANA time zone # database. For example, "CRON_TZ=America/New_York 1 * * * *", or # "TZ=America/New_York 1 * * * *". class SyncConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for vector indexing. # @!attribute [rw] tree_ah_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig] # Optional. Configuration options for the tree-AH algorithm (Shallow tree # + Asymmetric Hashing). Please refer to this paper for more details: # https://arxiv.org/abs/1908.10396 # @!attribute [rw] brute_force_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig] # Optional. Configuration options for using brute force search, which # simply implements the standard linear search in the database for each # query. It is primarily meant for benchmarking and to generate the # ground truth for approximate search. # @!attribute [rw] embedding_column # @return [::String] # Optional. Column of embedding. This column contains the source data to # create index for vector search. embedding_column must be set when using # vector search. # @!attribute [rw] filter_columns # @return [::Array<::String>] # Optional. Columns of features that're used to filter vector search # results. # @!attribute [rw] crowding_column # @return [::String] # Optional. Column of crowding. This column contains crowding attribute # which is a constraint on a neighbor list produced by # {::Google::Cloud::AIPlatform::V1::FeatureOnlineStoreService::Client#search_nearest_entities FeatureOnlineStoreService.SearchNearestEntities} # to diversify search results. If # {::Google::Cloud::AIPlatform::V1::NearestNeighborQuery#per_crowding_attribute_neighbor_count NearestNeighborQuery.per_crowding_attribute_neighbor_count} # is set to K in # {::Google::Cloud::AIPlatform::V1::SearchNearestEntitiesRequest SearchNearestEntitiesRequest}, # it's guaranteed that no more than K entities of the same crowding # attribute are returned in the response. # @!attribute [rw] embedding_dimension # @return [::Integer] # Optional. The number of dimensions of the input embedding. # @!attribute [rw] distance_measure_type # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType] # Optional. The distance measure used in nearest neighbor search. class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end # A Feature Registry source for features that need to be synced to Online # Store. # @!attribute [rw] feature_groups # @return [::Array<::Google::Cloud::AIPlatform::V1::FeatureView::FeatureRegistrySource::FeatureGroup>] # Required. List of features that need to be synced to Online Store. # @!attribute [rw] project_number # @return [::Integer] # Optional. The project number of the parent project of the Feature Groups. class FeatureRegistrySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Features belonging to a single feature group that will be # synced to Online Store. # @!attribute [rw] feature_group_id # @return [::String] # Required. Identifier of the feature group. # @!attribute [rw] feature_ids # @return [::Array<::String>] # Required. Identifiers of features under the feature group. class FeatureGroup include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # A Vertex Rag source for features that need to be synced to Online # Store. # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view/table URI that will be materialized on each # manual sync trigger. The table/view is expected to have the following # columns and types at least: # - `corpus_id` (STRING, NULLABLE/REQUIRED) # - `file_id` (STRING, NULLABLE/REQUIRED) # - `chunk_id` (STRING, NULLABLE/REQUIRED) # - `chunk_data_type` (STRING, NULLABLE/REQUIRED) # - `chunk_data` (STRING, NULLABLE/REQUIRED) # - `embeddings` (FLOAT, REPEATED) # - `file_original_uri` (STRING, NULLABLE/REQUIRED) # @!attribute [rw] rag_corpus_id # @return [::Integer] # Optional. The RAG corpus id corresponding to this FeatureView. class VertexRagSource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#satisfies_pzs ⇒ ::Boolean (readonly)
Returns Output only. Reserved for future use.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 81 class FeatureView include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view URI that will be materialized on each sync # trigger based on FeatureView.SyncConfig. # @!attribute [rw] entity_id_columns # @return [::Array<::String>] # Required. Columns to construct entity_id / row keys. class BigQuerySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for Sync. Only one option is set. # @!attribute [rw] cron # @return [::String] # Cron schedule (https://en.wikipedia.org/wiki/Cron) to launch scheduled # runs. To explicitly set a timezone to the cron tab, apply a prefix in # the cron tab: "CRON_TZ=$\\{IANA_TIME_ZONE}" or "TZ=$\\{IANA_TIME_ZONE}". # The $\\{IANA_TIME_ZONE} may only be a valid string from IANA time zone # database. For example, "CRON_TZ=America/New_York 1 * * * *", or # "TZ=America/New_York 1 * * * *". class SyncConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for vector indexing. # @!attribute [rw] tree_ah_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig] # Optional. Configuration options for the tree-AH algorithm (Shallow tree # + Asymmetric Hashing). Please refer to this paper for more details: # https://arxiv.org/abs/1908.10396 # @!attribute [rw] brute_force_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig] # Optional. Configuration options for using brute force search, which # simply implements the standard linear search in the database for each # query. It is primarily meant for benchmarking and to generate the # ground truth for approximate search. # @!attribute [rw] embedding_column # @return [::String] # Optional. Column of embedding. This column contains the source data to # create index for vector search. embedding_column must be set when using # vector search. # @!attribute [rw] filter_columns # @return [::Array<::String>] # Optional. Columns of features that're used to filter vector search # results. # @!attribute [rw] crowding_column # @return [::String] # Optional. Column of crowding. This column contains crowding attribute # which is a constraint on a neighbor list produced by # {::Google::Cloud::AIPlatform::V1::FeatureOnlineStoreService::Client#search_nearest_entities FeatureOnlineStoreService.SearchNearestEntities} # to diversify search results. If # {::Google::Cloud::AIPlatform::V1::NearestNeighborQuery#per_crowding_attribute_neighbor_count NearestNeighborQuery.per_crowding_attribute_neighbor_count} # is set to K in # {::Google::Cloud::AIPlatform::V1::SearchNearestEntitiesRequest SearchNearestEntitiesRequest}, # it's guaranteed that no more than K entities of the same crowding # attribute are returned in the response. # @!attribute [rw] embedding_dimension # @return [::Integer] # Optional. The number of dimensions of the input embedding. # @!attribute [rw] distance_measure_type # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType] # Optional. The distance measure used in nearest neighbor search. class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end # A Feature Registry source for features that need to be synced to Online # Store. # @!attribute [rw] feature_groups # @return [::Array<::Google::Cloud::AIPlatform::V1::FeatureView::FeatureRegistrySource::FeatureGroup>] # Required. List of features that need to be synced to Online Store. # @!attribute [rw] project_number # @return [::Integer] # Optional. The project number of the parent project of the Feature Groups. class FeatureRegistrySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Features belonging to a single feature group that will be # synced to Online Store. # @!attribute [rw] feature_group_id # @return [::String] # Required. Identifier of the feature group. # @!attribute [rw] feature_ids # @return [::Array<::String>] # Required. Identifiers of features under the feature group. class FeatureGroup include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # A Vertex Rag source for features that need to be synced to Online # Store. # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view/table URI that will be materialized on each # manual sync trigger. The table/view is expected to have the following # columns and types at least: # - `corpus_id` (STRING, NULLABLE/REQUIRED) # - `file_id` (STRING, NULLABLE/REQUIRED) # - `chunk_id` (STRING, NULLABLE/REQUIRED) # - `chunk_data_type` (STRING, NULLABLE/REQUIRED) # - `chunk_data` (STRING, NULLABLE/REQUIRED) # - `embeddings` (FLOAT, REPEATED) # - `file_original_uri` (STRING, NULLABLE/REQUIRED) # @!attribute [rw] rag_corpus_id # @return [::Integer] # Optional. The RAG corpus id corresponding to this FeatureView. class VertexRagSource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#sync_config ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::SyncConfig
Returns Configures when data is to be synced/updated for this FeatureView. At the end of the sync the latest featureValues for each entityId of this FeatureView are made ready for online serving.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 81 class FeatureView include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view URI that will be materialized on each sync # trigger based on FeatureView.SyncConfig. # @!attribute [rw] entity_id_columns # @return [::Array<::String>] # Required. Columns to construct entity_id / row keys. class BigQuerySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for Sync. Only one option is set. # @!attribute [rw] cron # @return [::String] # Cron schedule (https://en.wikipedia.org/wiki/Cron) to launch scheduled # runs. To explicitly set a timezone to the cron tab, apply a prefix in # the cron tab: "CRON_TZ=$\\{IANA_TIME_ZONE}" or "TZ=$\\{IANA_TIME_ZONE}". # The $\\{IANA_TIME_ZONE} may only be a valid string from IANA time zone # database. For example, "CRON_TZ=America/New_York 1 * * * *", or # "TZ=America/New_York 1 * * * *". class SyncConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for vector indexing. # @!attribute [rw] tree_ah_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig] # Optional. Configuration options for the tree-AH algorithm (Shallow tree # + Asymmetric Hashing). Please refer to this paper for more details: # https://arxiv.org/abs/1908.10396 # @!attribute [rw] brute_force_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig] # Optional. Configuration options for using brute force search, which # simply implements the standard linear search in the database for each # query. It is primarily meant for benchmarking and to generate the # ground truth for approximate search. # @!attribute [rw] embedding_column # @return [::String] # Optional. Column of embedding. This column contains the source data to # create index for vector search. embedding_column must be set when using # vector search. # @!attribute [rw] filter_columns # @return [::Array<::String>] # Optional. Columns of features that're used to filter vector search # results. # @!attribute [rw] crowding_column # @return [::String] # Optional. Column of crowding. This column contains crowding attribute # which is a constraint on a neighbor list produced by # {::Google::Cloud::AIPlatform::V1::FeatureOnlineStoreService::Client#search_nearest_entities FeatureOnlineStoreService.SearchNearestEntities} # to diversify search results. If # {::Google::Cloud::AIPlatform::V1::NearestNeighborQuery#per_crowding_attribute_neighbor_count NearestNeighborQuery.per_crowding_attribute_neighbor_count} # is set to K in # {::Google::Cloud::AIPlatform::V1::SearchNearestEntitiesRequest SearchNearestEntitiesRequest}, # it's guaranteed that no more than K entities of the same crowding # attribute are returned in the response. # @!attribute [rw] embedding_dimension # @return [::Integer] # Optional. The number of dimensions of the input embedding. # @!attribute [rw] distance_measure_type # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType] # Optional. The distance measure used in nearest neighbor search. class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end # A Feature Registry source for features that need to be synced to Online # Store. # @!attribute [rw] feature_groups # @return [::Array<::Google::Cloud::AIPlatform::V1::FeatureView::FeatureRegistrySource::FeatureGroup>] # Required. List of features that need to be synced to Online Store. # @!attribute [rw] project_number # @return [::Integer] # Optional. The project number of the parent project of the Feature Groups. class FeatureRegistrySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Features belonging to a single feature group that will be # synced to Online Store. # @!attribute [rw] feature_group_id # @return [::String] # Required. Identifier of the feature group. # @!attribute [rw] feature_ids # @return [::Array<::String>] # Required. Identifiers of features under the feature group. class FeatureGroup include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # A Vertex Rag source for features that need to be synced to Online # Store. # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view/table URI that will be materialized on each # manual sync trigger. The table/view is expected to have the following # columns and types at least: # - `corpus_id` (STRING, NULLABLE/REQUIRED) # - `file_id` (STRING, NULLABLE/REQUIRED) # - `chunk_id` (STRING, NULLABLE/REQUIRED) # - `chunk_data_type` (STRING, NULLABLE/REQUIRED) # - `chunk_data` (STRING, NULLABLE/REQUIRED) # - `embeddings` (FLOAT, REPEATED) # - `file_original_uri` (STRING, NULLABLE/REQUIRED) # @!attribute [rw] rag_corpus_id # @return [::Integer] # Optional. The RAG corpus id corresponding to this FeatureView. class VertexRagSource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#update_time ⇒ ::Google::Protobuf::Timestamp (readonly)
Returns Output only. Timestamp when this FeatureView was last updated.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 81 class FeatureView include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view URI that will be materialized on each sync # trigger based on FeatureView.SyncConfig. # @!attribute [rw] entity_id_columns # @return [::Array<::String>] # Required. Columns to construct entity_id / row keys. class BigQuerySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for Sync. Only one option is set. # @!attribute [rw] cron # @return [::String] # Cron schedule (https://en.wikipedia.org/wiki/Cron) to launch scheduled # runs. To explicitly set a timezone to the cron tab, apply a prefix in # the cron tab: "CRON_TZ=$\\{IANA_TIME_ZONE}" or "TZ=$\\{IANA_TIME_ZONE}". # The $\\{IANA_TIME_ZONE} may only be a valid string from IANA time zone # database. For example, "CRON_TZ=America/New_York 1 * * * *", or # "TZ=America/New_York 1 * * * *". class SyncConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for vector indexing. # @!attribute [rw] tree_ah_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig] # Optional. Configuration options for the tree-AH algorithm (Shallow tree # + Asymmetric Hashing). Please refer to this paper for more details: # https://arxiv.org/abs/1908.10396 # @!attribute [rw] brute_force_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig] # Optional. Configuration options for using brute force search, which # simply implements the standard linear search in the database for each # query. It is primarily meant for benchmarking and to generate the # ground truth for approximate search. # @!attribute [rw] embedding_column # @return [::String] # Optional. Column of embedding. This column contains the source data to # create index for vector search. embedding_column must be set when using # vector search. # @!attribute [rw] filter_columns # @return [::Array<::String>] # Optional. Columns of features that're used to filter vector search # results. # @!attribute [rw] crowding_column # @return [::String] # Optional. Column of crowding. This column contains crowding attribute # which is a constraint on a neighbor list produced by # {::Google::Cloud::AIPlatform::V1::FeatureOnlineStoreService::Client#search_nearest_entities FeatureOnlineStoreService.SearchNearestEntities} # to diversify search results. If # {::Google::Cloud::AIPlatform::V1::NearestNeighborQuery#per_crowding_attribute_neighbor_count NearestNeighborQuery.per_crowding_attribute_neighbor_count} # is set to K in # {::Google::Cloud::AIPlatform::V1::SearchNearestEntitiesRequest SearchNearestEntitiesRequest}, # it's guaranteed that no more than K entities of the same crowding # attribute are returned in the response. # @!attribute [rw] embedding_dimension # @return [::Integer] # Optional. The number of dimensions of the input embedding. # @!attribute [rw] distance_measure_type # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType] # Optional. The distance measure used in nearest neighbor search. class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end # A Feature Registry source for features that need to be synced to Online # Store. # @!attribute [rw] feature_groups # @return [::Array<::Google::Cloud::AIPlatform::V1::FeatureView::FeatureRegistrySource::FeatureGroup>] # Required. List of features that need to be synced to Online Store. # @!attribute [rw] project_number # @return [::Integer] # Optional. The project number of the parent project of the Feature Groups. class FeatureRegistrySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Features belonging to a single feature group that will be # synced to Online Store. # @!attribute [rw] feature_group_id # @return [::String] # Required. Identifier of the feature group. # @!attribute [rw] feature_ids # @return [::Array<::String>] # Required. Identifiers of features under the feature group. class FeatureGroup include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # A Vertex Rag source for features that need to be synced to Online # Store. # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view/table URI that will be materialized on each # manual sync trigger. The table/view is expected to have the following # columns and types at least: # - `corpus_id` (STRING, NULLABLE/REQUIRED) # - `file_id` (STRING, NULLABLE/REQUIRED) # - `chunk_id` (STRING, NULLABLE/REQUIRED) # - `chunk_data_type` (STRING, NULLABLE/REQUIRED) # - `chunk_data` (STRING, NULLABLE/REQUIRED) # - `embeddings` (FLOAT, REPEATED) # - `file_original_uri` (STRING, NULLABLE/REQUIRED) # @!attribute [rw] rag_corpus_id # @return [::Integer] # Optional. The RAG corpus id corresponding to this FeatureView. class VertexRagSource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |
#vertex_rag_source ⇒ ::Google::Cloud::AIPlatform::V1::FeatureView::VertexRagSource
Returns Optional. The Vertex RAG Source that the FeatureView is linked to.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# File 'proto_docs/google/cloud/aiplatform/v1/feature_view.rb', line 81 class FeatureView include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view URI that will be materialized on each sync # trigger based on FeatureView.SyncConfig. # @!attribute [rw] entity_id_columns # @return [::Array<::String>] # Required. Columns to construct entity_id / row keys. class BigQuerySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for Sync. Only one option is set. # @!attribute [rw] cron # @return [::String] # Cron schedule (https://en.wikipedia.org/wiki/Cron) to launch scheduled # runs. To explicitly set a timezone to the cron tab, apply a prefix in # the cron tab: "CRON_TZ=$\\{IANA_TIME_ZONE}" or "TZ=$\\{IANA_TIME_ZONE}". # The $\\{IANA_TIME_ZONE} may only be a valid string from IANA time zone # database. For example, "CRON_TZ=America/New_York 1 * * * *", or # "TZ=America/New_York 1 * * * *". class SyncConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration for vector indexing. # @!attribute [rw] tree_ah_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig] # Optional. Configuration options for the tree-AH algorithm (Shallow tree # + Asymmetric Hashing). Please refer to this paper for more details: # https://arxiv.org/abs/1908.10396 # @!attribute [rw] brute_force_config # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig] # Optional. Configuration options for using brute force search, which # simply implements the standard linear search in the database for each # query. It is primarily meant for benchmarking and to generate the # ground truth for approximate search. # @!attribute [rw] embedding_column # @return [::String] # Optional. Column of embedding. This column contains the source data to # create index for vector search. embedding_column must be set when using # vector search. # @!attribute [rw] filter_columns # @return [::Array<::String>] # Optional. Columns of features that're used to filter vector search # results. # @!attribute [rw] crowding_column # @return [::String] # Optional. Column of crowding. This column contains crowding attribute # which is a constraint on a neighbor list produced by # {::Google::Cloud::AIPlatform::V1::FeatureOnlineStoreService::Client#search_nearest_entities FeatureOnlineStoreService.SearchNearestEntities} # to diversify search results. If # {::Google::Cloud::AIPlatform::V1::NearestNeighborQuery#per_crowding_attribute_neighbor_count NearestNeighborQuery.per_crowding_attribute_neighbor_count} # is set to K in # {::Google::Cloud::AIPlatform::V1::SearchNearestEntitiesRequest SearchNearestEntitiesRequest}, # it's guaranteed that no more than K entities of the same crowding # attribute are returned in the response. # @!attribute [rw] embedding_dimension # @return [::Integer] # Optional. The number of dimensions of the input embedding. # @!attribute [rw] distance_measure_type # @return [::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType] # Optional. The distance measure used in nearest neighbor search. class IndexConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Configuration options for using brute force search. class BruteForceConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # Configuration options for the tree-AH algorithm. # @!attribute [rw] leaf_node_embedding_count # @return [::Integer] # Optional. Number of embeddings on each leaf node. The default value is # 1000 if not set. class TreeAHConfig include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # The distance measure used in nearest neighbor search. module DistanceMeasureType # Should not be set. DISTANCE_MEASURE_TYPE_UNSPECIFIED = 0 # Euclidean (L_2) Distance. SQUARED_L2_DISTANCE = 1 # Cosine Distance. Defined as 1 - cosine similarity. # # We strongly suggest using DOT_PRODUCT_DISTANCE + UNIT_L2_NORM instead # of COSINE distance. Our algorithms have been more optimized for # DOT_PRODUCT distance which, when combined with UNIT_L2_NORM, is # mathematically equivalent to COSINE distance and results in the same # ranking. COSINE_DISTANCE = 2 # Dot Product Distance. Defined as a negative of the dot product. DOT_PRODUCT_DISTANCE = 3 end end # A Feature Registry source for features that need to be synced to Online # Store. # @!attribute [rw] feature_groups # @return [::Array<::Google::Cloud::AIPlatform::V1::FeatureView::FeatureRegistrySource::FeatureGroup>] # Required. List of features that need to be synced to Online Store. # @!attribute [rw] project_number # @return [::Integer] # Optional. The project number of the parent project of the Feature Groups. class FeatureRegistrySource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods # Features belonging to a single feature group that will be # synced to Online Store. # @!attribute [rw] feature_group_id # @return [::String] # Required. Identifier of the feature group. # @!attribute [rw] feature_ids # @return [::Array<::String>] # Required. Identifiers of features under the feature group. class FeatureGroup include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end # A Vertex Rag source for features that need to be synced to Online # Store. # @!attribute [rw] uri # @return [::String] # Required. The BigQuery view/table URI that will be materialized on each # manual sync trigger. The table/view is expected to have the following # columns and types at least: # - `corpus_id` (STRING, NULLABLE/REQUIRED) # - `file_id` (STRING, NULLABLE/REQUIRED) # - `chunk_id` (STRING, NULLABLE/REQUIRED) # - `chunk_data_type` (STRING, NULLABLE/REQUIRED) # - `chunk_data` (STRING, NULLABLE/REQUIRED) # - `embeddings` (FLOAT, REPEATED) # - `file_original_uri` (STRING, NULLABLE/REQUIRED) # @!attribute [rw] rag_corpus_id # @return [::Integer] # Optional. The RAG corpus id corresponding to this FeatureView. class VertexRagSource include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end # @!attribute [rw] key # @return [::String] # @!attribute [rw] value # @return [::String] class LabelsEntry include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end end |