Class: Ephemeris

Inherits:
Object
  • Object
show all
Defined in:
lib/ephemeris.rb

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(date, lat, lon, tz) ⇒ Ephemeris

Returns a new instance of Ephemeris.



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# File 'lib/ephemeris.rb', line 165

def initialize (date, lat, lon, tz)
  pi      = Math::PI

  def get_vars(body) # GET VARIABLES FOR THE BODY
    b = @body[body]
    return b["N"], b["i"], b["w"], b["a"], b["e"], b["M"]
  end

  def body_calc(body) # CALCULATE FOR THE BODY
    pi      = Math::PI
    n_b, i_b, w_b, a_b, e_b, m_b = self.get_vars(body)
    w_b     = (w_b + 360) % 360
    m_b     = m_b % 360
    e1      = m_b + (180/pi) * e_b * Math.sin(m_b.deg) * (1 + e_b*Math.cos(m_b.deg))
    e0      = 0
    while (e1 - e0).abs > 0.0005
      e0    = e1
      e1    = e0 - (e0 - (180/pi) * e_b * Math.sin(e0.deg) - m_b) / (1 - e_b * Math.cos(e0.deg))
    end
    e       = e1
    x       = a_b * (Math.cos(e.deg) - e_b)
    y       = a_b * Math.sqrt(1 - e_b*e_b) * Math.sin(e.deg)
    r       = Math.sqrt(x*x + y*y)
    v       = (Math.atan2(y, x)*180/pi + 360) % 360
    xeclip  = r * (Math.cos(n_b.deg) * Math.cos((v+w_b).deg) - Math.sin(n_b.deg) * Math.sin((v+w_b).deg) * Math.cos(i_b.deg))
    yeclip  = r * (Math.sin(n_b.deg) * Math.cos((v+w_b).deg) + Math.cos(n_b.deg) * Math.sin((v+w_b).deg) * Math.cos(i_b.deg))
    zeclip  = r * Math.sin((v+w_b).deg) * Math.sin(i_b.deg)
    lon     =  (Math.atan2(yeclip, xeclip)*180/pi + 360) % 360
    lat     =  Math.atan2(zeclip, Math.sqrt(xeclip*xeclip + yeclip*yeclip))*180/pi
    r_b     =  Math.sqrt(xeclip*xeclip + yeclip*yeclip + zeclip*zeclip)
    m_J     = @body["jupiter"]["M"] 
    m_S     = @body["saturn"]["M"] 
    m_U     = @body["uranus"]["M"] 
    plon    = 0
    plat    = 0
    pdist   = 0
    case body
    when "moon"
      lb     = (n_b + w_b + m_b) % 360
      db     = (lb - @ls + 360) % 360
      fb     = (lb - n_b + 360) % 360
      plon  += -1.274 * Math.sin((m_b - 2*db).deg)
      plon  +=  0.658 * Math.sin((2*db).deg)
      plon  += -0.186 * Math.sin(@ms.deg)
      plon  += -0.059 * Math.sin((2*m_b - 2*db).deg)
      plon  += -0.057 * Math.sin((m_b - 2*db + @ms).deg)
      plon  +=  0.053 * Math.sin((m_b + 2*db).deg)
      plon  +=  0.046 * Math.sin((2*db - @ms).deg)
      plon  +=  0.041 * Math.sin((m_b - @ms).deg)
      plon  += -0.035 * Math.sin(db.deg)
      plon  += -0.031 * Math.sin((m_b + @ms).deg)
      plon  += -0.015 * Math.sin((2*fb - 2*db).deg)
      plon  +=  0.011 * Math.sin((m_b - 4*db).deg)
      plat  += -0.173 * Math.sin((fb - 2*db).deg)
      plat  += -0.055 * Math.sin((m_b - fb - 2*db).deg)
      plat  += -0.046 * Math.sin((m_b + fb - 2*db).deg)
      plat  +=  0.033 * Math.sin((fb + 2*db).deg)
      plat  +=  0.017 * Math.sin((2*m_b + fb).deg)
      pdist += -0.58  * Math.cos((m_b - 2*db).deg)
      pdist += -0.46  * Math.cos(2*db.deg)
    when "jupiter"
      plon  += -0.332 * Math.sin((2*m_J - 5*m_S - 67.6).deg)
      plon  += -0.056 * Math.sin((2*m_J - 2*m_S + 21).deg)
      plon  +=  0.042 * Math.sin((3*m_J - 5*m_S + 21).deg)
      plon  += -0.036 * Math.sin((m_J - 2*m_S).deg)
      plon  +=  0.022 * Math.cos((m_J - m_S).deg)
      plon  +=  0.023 * Math.sin((2*m_J - 3*m_S + 52).deg)
      plon  += -0.016 * Math.sin((m_J - 5*m_S - 69).deg)
    when "saturn"
      plon  +=  0.812 * Math.sin((2*m_J - 5*m_S - 67.6).deg)
      plon  += -0.229 * Math.cos((2*m_J - 4*m_S - 2).deg)
      plon  +=  0.119 * Math.sin((m_J - 2*m_S - 3).deg)
      plon  +=  0.046 * Math.sin((2*m_J - 6*m_S - 69).deg)
      plon  +=  0.014 * Math.sin((m_J - 3*m_S + 32).deg)
      plat  += -0.020 * Math.cos((2*m_J - 4*m_S - 2).deg)
      plat  +=  0.018 * Math.sin((2*m_J - 6*m_S - 49).deg)
    when "uranus"
      plon  +=  0.040 * Math.sin((m_S - 2*m_U + 6).deg)
      plon  +=  0.035 * Math.sin((m_S - 3*m_U + 33).deg)
      plon  += -0.015 * Math.sin((m_J - m_U + 20).deg)
    end
    lon   += plon
    lat   += plat
    r_b   += pdist
    if body == "moon"
      xeclip  = Math.cos(lon.deg) * Math.cos(lat.deg)
      yeclip  = Math.sin(lon.deg) * Math.cos(lat.deg)
      zeclip  = Math.sin(lat.deg)
    else
      xeclip += @xs
      yeclip += @ys
    end
    xequat  = xeclip
    yequat  = yeclip * Math.cos(@ecl.deg) - zeclip * Math.sin(@ecl.deg)
    zequat  = yeclip * Math.sin(@ecl.deg) + zeclip * Math.cos(@ecl.deg)
    ra      = (Math.atan2(yequat, xequat)*180/pi + 360) % 360
    dec     = Math.atan2(zequat, Math.sqrt(xequat*xequat + yequat*yequat))*180/pi
    body   == "moon" ? par = Math.asin(1/r_b)*180/pi : par = (8.794/3600)/r_b
    gclat   = @lat - 0.1924 * Math.sin(2*@lat.deg)
    rho     = 0.99833 + 0.00167 * Math.cos(2*@lat.deg)
    lst     = @sidtime * 15
    ha      = (lst - ra + 360) % 360
    g       = Math.atan(Math.tan(gclat.deg) / Math.cos(ha.deg))*180/pi
    topRA   = ra  - par * rho * Math.cos(gclat.deg) * Math.sin(ha.deg) / Math.cos(dec.deg)
    topDecl = dec - par * rho * Math.sin(gclat.deg) * Math.sin((g - dec).deg) / Math.sin(g.deg)
    ra      = topRA.round(4)
    dec     = topDecl.round(4)
    r       = Math.sqrt(xequat*xequat + yequat*yequat + zequat*zequat).round(4)
    ri, tr, se = self.rts(ra, dec)
    object  = [ra, dec, r, self.hms_dms(ra, dec), ri, tr, se].flatten
    return object
  end
    
  # START OF INITIALIZE
  @lat   = lat
  @lon   = lon
  @tz    = tz
  y      = date[0..3].to_i
  m      = date[5..6].to_i
  d      = date[8..9].to_i
  @d     = 367*y - 7*(y + (m+9)/12) / 4 + 275*m/9 + d - 730530
  @ecl   = 23.439279444 - 46.8150/3600*(@d/36525) - 0.00059/3600*(@d/36525)**2 + 0.001813/3600*(@d/36525)**3

  self.body_data

  # SUN
  n_s, i_s, w_s, a_s, e_s, m_s = self.get_vars("sun")
  w_s      = (w_s + 360) % 360
  @ms      = m_s % 360
  es       = @ms + (180/pi) * e_s * Math.sin(@ms.deg) * (1 + e_s*Math.cos(@ms.deg))
  x        = Math.cos(es.deg) - e_s
  y        = Math.sin(es.deg) * Math.sqrt(1 - e_s*e_s)
  v        = Math.atan2(y,x)*180/pi
  r        = Math.sqrt(x*x + y*y)
  tlon     = (v + w_s)%360
  @xs      = r * Math.cos(tlon.deg)
  @ys      = r * Math.sin(tlon.deg)
  xe       = @xs
  ye       = @ys * Math.cos(@ecl.deg)
  ze       = @ys * Math.sin(@ecl.deg)
  r        = Math.sqrt(xe*xe + ye*ye + ze*ze)
  ra       = Math.atan2(ye,xe)*180/pi
  ra_s     = ((ra + 360)%360).round(4)
  dec_s    = (Math.atan2(ze,Math.sqrt(xe*xe + ye*ye))*180/pi).round(4)

  @ls      = (w_s + @ms)%360
  gmst0   = (@ls + 180)/15%24
  @sidtime = gmst0 + @lon/15 
  
  @alt_s, @az_s = self.alt_az(ra_s, dec_s, @sidtime)

  @sun     = [ra_s, dec_s, 1.0, self.hms_dms(ra_s, dec_s)].flatten 
  @moon    = self.body_calc("moon")
  @mercury = self.body_calc("mercury")
  @venus   = self.body_calc("venus")
  @mars    = self.body_calc("mars")
  @jupiter = self.body_calc("jupiter")
  @saturn  = self.body_calc("saturn")
  @uranus  = self.body_calc("uranus")
  @neptune = self.body_calc("neptune")

end

Instance Attribute Details

#jupiterObject (readonly)

Returns the value of attribute jupiter.



19
20
21
# File 'lib/ephemeris.rb', line 19

def jupiter
  @jupiter
end

#marsObject (readonly)

Returns the value of attribute mars.



19
20
21
# File 'lib/ephemeris.rb', line 19

def mars
  @mars
end

#mercuryObject (readonly)

Returns the value of attribute mercury.



19
20
21
# File 'lib/ephemeris.rb', line 19

def mercury
  @mercury
end

#moonObject (readonly)

Returns the value of attribute moon.



19
20
21
# File 'lib/ephemeris.rb', line 19

def moon
  @moon
end

#neptuneObject (readonly)

Returns the value of attribute neptune.



19
20
21
# File 'lib/ephemeris.rb', line 19

def neptune
  @neptune
end

#saturnObject (readonly)

Returns the value of attribute saturn.



19
20
21
# File 'lib/ephemeris.rb', line 19

def saturn
  @saturn
end

#sunObject (readonly)

Returns the value of attribute sun.



19
20
21
# File 'lib/ephemeris.rb', line 19

def sun
  @sun
end

#uranusObject (readonly)

Returns the value of attribute uranus.



19
20
21
# File 'lib/ephemeris.rb', line 19

def uranus
  @uranus
end

#venusObject (readonly)

Returns the value of attribute venus.



19
20
21
# File 'lib/ephemeris.rb', line 19

def venus
  @venus
end

Instance Method Details

#alt_az(ra, dec, time) ⇒ Object



96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# File 'lib/ephemeris.rb', line 96

def alt_az(ra, dec, time)
  pi      = Math::PI
  ra_h = ra/15
  #ha   = (@sidtime - ra_h)*15
  ha   = (time - ra_h)*15
  x    = Math.cos(ha.deg) * Math.cos(dec.deg)
  y    = Math.sin(ha.deg) * Math.cos(dec.deg)
  z    = Math.sin(dec.deg)
  xhor = x * Math.sin(@lat.deg) - z * Math.cos(@lat.deg)
  yhor = y
  zhor = x * Math.cos(@lat.deg) + z * Math.sin(@lat.deg)
  az   = Math.atan2(yhor, xhor)*180/pi + 180
  alt  = Math.asin(zhor)*180/pi
  return alt, az
end

#body_alt_az(body, time) ⇒ Object



112
113
114
# File 'lib/ephemeris.rb', line 112

def body_alt_az(body, time)
  self.alt_az(self.body_calc(body)[0], self.body_calc(body)[1], time)
end

#body_calc(body) ⇒ Object

CALCULATE FOR THE BODY



173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# File 'lib/ephemeris.rb', line 173

def body_calc(body) # CALCULATE FOR THE BODY
  pi      = Math::PI
  n_b, i_b, w_b, a_b, e_b, m_b = self.get_vars(body)
  w_b     = (w_b + 360) % 360
  m_b     = m_b % 360
  e1      = m_b + (180/pi) * e_b * Math.sin(m_b.deg) * (1 + e_b*Math.cos(m_b.deg))
  e0      = 0
  while (e1 - e0).abs > 0.0005
    e0    = e1
    e1    = e0 - (e0 - (180/pi) * e_b * Math.sin(e0.deg) - m_b) / (1 - e_b * Math.cos(e0.deg))
  end
  e       = e1
  x       = a_b * (Math.cos(e.deg) - e_b)
  y       = a_b * Math.sqrt(1 - e_b*e_b) * Math.sin(e.deg)
  r       = Math.sqrt(x*x + y*y)
  v       = (Math.atan2(y, x)*180/pi + 360) % 360
  xeclip  = r * (Math.cos(n_b.deg) * Math.cos((v+w_b).deg) - Math.sin(n_b.deg) * Math.sin((v+w_b).deg) * Math.cos(i_b.deg))
  yeclip  = r * (Math.sin(n_b.deg) * Math.cos((v+w_b).deg) + Math.cos(n_b.deg) * Math.sin((v+w_b).deg) * Math.cos(i_b.deg))
  zeclip  = r * Math.sin((v+w_b).deg) * Math.sin(i_b.deg)
  lon     =  (Math.atan2(yeclip, xeclip)*180/pi + 360) % 360
  lat     =  Math.atan2(zeclip, Math.sqrt(xeclip*xeclip + yeclip*yeclip))*180/pi
  r_b     =  Math.sqrt(xeclip*xeclip + yeclip*yeclip + zeclip*zeclip)
  m_J     = @body["jupiter"]["M"] 
  m_S     = @body["saturn"]["M"] 
  m_U     = @body["uranus"]["M"] 
  plon    = 0
  plat    = 0
  pdist   = 0
  case body
  when "moon"
    lb     = (n_b + w_b + m_b) % 360
    db     = (lb - @ls + 360) % 360
    fb     = (lb - n_b + 360) % 360
    plon  += -1.274 * Math.sin((m_b - 2*db).deg)
    plon  +=  0.658 * Math.sin((2*db).deg)
    plon  += -0.186 * Math.sin(@ms.deg)
    plon  += -0.059 * Math.sin((2*m_b - 2*db).deg)
    plon  += -0.057 * Math.sin((m_b - 2*db + @ms).deg)
    plon  +=  0.053 * Math.sin((m_b + 2*db).deg)
    plon  +=  0.046 * Math.sin((2*db - @ms).deg)
    plon  +=  0.041 * Math.sin((m_b - @ms).deg)
    plon  += -0.035 * Math.sin(db.deg)
    plon  += -0.031 * Math.sin((m_b + @ms).deg)
    plon  += -0.015 * Math.sin((2*fb - 2*db).deg)
    plon  +=  0.011 * Math.sin((m_b - 4*db).deg)
    plat  += -0.173 * Math.sin((fb - 2*db).deg)
    plat  += -0.055 * Math.sin((m_b - fb - 2*db).deg)
    plat  += -0.046 * Math.sin((m_b + fb - 2*db).deg)
    plat  +=  0.033 * Math.sin((fb + 2*db).deg)
    plat  +=  0.017 * Math.sin((2*m_b + fb).deg)
    pdist += -0.58  * Math.cos((m_b - 2*db).deg)
    pdist += -0.46  * Math.cos(2*db.deg)
  when "jupiter"
    plon  += -0.332 * Math.sin((2*m_J - 5*m_S - 67.6).deg)
    plon  += -0.056 * Math.sin((2*m_J - 2*m_S + 21).deg)
    plon  +=  0.042 * Math.sin((3*m_J - 5*m_S + 21).deg)
    plon  += -0.036 * Math.sin((m_J - 2*m_S).deg)
    plon  +=  0.022 * Math.cos((m_J - m_S).deg)
    plon  +=  0.023 * Math.sin((2*m_J - 3*m_S + 52).deg)
    plon  += -0.016 * Math.sin((m_J - 5*m_S - 69).deg)
  when "saturn"
    plon  +=  0.812 * Math.sin((2*m_J - 5*m_S - 67.6).deg)
    plon  += -0.229 * Math.cos((2*m_J - 4*m_S - 2).deg)
    plon  +=  0.119 * Math.sin((m_J - 2*m_S - 3).deg)
    plon  +=  0.046 * Math.sin((2*m_J - 6*m_S - 69).deg)
    plon  +=  0.014 * Math.sin((m_J - 3*m_S + 32).deg)
    plat  += -0.020 * Math.cos((2*m_J - 4*m_S - 2).deg)
    plat  +=  0.018 * Math.sin((2*m_J - 6*m_S - 49).deg)
  when "uranus"
    plon  +=  0.040 * Math.sin((m_S - 2*m_U + 6).deg)
    plon  +=  0.035 * Math.sin((m_S - 3*m_U + 33).deg)
    plon  += -0.015 * Math.sin((m_J - m_U + 20).deg)
  end
  lon   += plon
  lat   += plat
  r_b   += pdist
  if body == "moon"
    xeclip  = Math.cos(lon.deg) * Math.cos(lat.deg)
    yeclip  = Math.sin(lon.deg) * Math.cos(lat.deg)
    zeclip  = Math.sin(lat.deg)
  else
    xeclip += @xs
    yeclip += @ys
  end
  xequat  = xeclip
  yequat  = yeclip * Math.cos(@ecl.deg) - zeclip * Math.sin(@ecl.deg)
  zequat  = yeclip * Math.sin(@ecl.deg) + zeclip * Math.cos(@ecl.deg)
  ra      = (Math.atan2(yequat, xequat)*180/pi + 360) % 360
  dec     = Math.atan2(zequat, Math.sqrt(xequat*xequat + yequat*yequat))*180/pi
  body   == "moon" ? par = Math.asin(1/r_b)*180/pi : par = (8.794/3600)/r_b
  gclat   = @lat - 0.1924 * Math.sin(2*@lat.deg)
  rho     = 0.99833 + 0.00167 * Math.cos(2*@lat.deg)
  lst     = @sidtime * 15
  ha      = (lst - ra + 360) % 360
  g       = Math.atan(Math.tan(gclat.deg) / Math.cos(ha.deg))*180/pi
  topRA   = ra  - par * rho * Math.cos(gclat.deg) * Math.sin(ha.deg) / Math.cos(dec.deg)
  topDecl = dec - par * rho * Math.sin(gclat.deg) * Math.sin((g - dec).deg) / Math.sin(g.deg)
  ra      = topRA.round(4)
  dec     = topDecl.round(4)
  r       = Math.sqrt(xequat*xequat + yequat*yequat + zequat*zequat).round(4)
  ri, tr, se = self.rts(ra, dec)
  object  = [ra, dec, r, self.hms_dms(ra, dec), ri, tr, se].flatten
  return object
end

#body_dataObject



21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# File 'lib/ephemeris.rb', line 21

def body_data
@body = {
"sun" => {
  "N" => 0.0,
  "i" => 0.0,
  "w" => 282.9404 + 4.70935e-5 * @d,
  "a" => 1.000000,
  "e" => 0.016709 - 1.151e-9 * @d,
  "M" => 356.0470 + 0.9856002585 * @d},
"moon" => {
  "N" => 125.1228 - 0.0529538083 * @d,
  "i" => 5.1454,
  "w" => 318.0634 + 0.1643573223 * @d,
  "a" => 60.2666, 
  "e" => 0.054900,
  "M" => 115.3654 + 13.0649929509 * @d},
"mercury" => {
  "N" => 48.3313 + 3.24587e-5 * @d,
  "i" => 7.0047 + 5.00e-8 * @d,
  "w" => 29.1241 + 1.01444e-5 * @d,
  "a" => 0.387098,  
  "e" => 0.205635 + 5.59e-10 * @d,
  "M" => 168.6562 + 4.0923344368 * @d},
"venus" => {
  "N" => 76.6799 + 2.46590e-5 * @d,
  "i" => 3.3946 + 2.75e-8 * @d,
  "w" => 54.8910 + 1.38374e-5 * @d,
  "a" => 0.723330,
  "e" => 0.006773 - 1.302e-9 * @d,
  "M" => 48.0052 + 1.6021302244 * @d},
"mars" => {
  "N" => 49.5574 + 2.11081e-5 * @d,
  "i" => 1.8497 - 1.78e-8 * @d,
  "w" => 286.5016 + 2.92961e-5 * @d,
  "a" => 1.523688,
  "e" => 0.093405 + 2.516e-9 * @d,
  "M" => 18.6021 + 0.5240207766 * @d},
"jupiter" => {
  "N" => 100.4542 + 2.76854e-5 * @d,
  "i" => 1.3030 - 1.557e-7 * @d,
  "w" => 273.8777 + 1.64505e-5 * @d,
  "a" => 5.20256,
  "e" => 0.048498 + 4.469e-9 * @d,
  "M" => 19.8950 + 0.0830853001 * @d},
"saturn" => {
  "N" => 113.6634 + 2.38980e-5 * @d,
  "i" => 2.4886 - 1.081e-7 * @d,
  "w" => 339.3939 + 2.97661e-5 * @d,
  "a" => 9.55475,
  "e" => 0.055546 - 9.499e-9 * @d,
  "M" => 316.9670 + 0.0334442282 * @d},
"uranus" => {
  "N" => 74.0005 + 1.3978e-5 * @d,
  "i" => 0.7733 + 1.9e-8 * @d,
  "w" => 96.6612 + 3.0565e-5 * @d,
  "a" => 19.18171 - 1.55e-8 * @d,
  "e" => 0.047318 + 7.45e-9 * @d,
  "M" => 142.5905 + 0.011725806 * @d},
"neptune" => {
  "N" => 131.7806 + 3.0173e-5 * @d,
  "i" => 1.7700 - 2.55e-7 * @d,
  "w" => 272.8461 - 6.027e-6 * @d,
  "a" => 30.05826 + 3.313e-8 * @d,
  "e" => 0.008606 + 2.15e-9 * @d,
  "M" => 260.2471 + 0.005995147 * @d}}
end

#distf(d) ⇒ Object



139
140
141
142
143
144
# File 'lib/ephemeris.rb', line 139

def distf(d)
  int = d.to_i.to_s.rjust(2)
  f   = d % 1
  frc = "%.4f" % f
  return int + frc[1..5]
end

#get_vars(body) ⇒ Object

GET VARIABLES FOR THE BODY



168
169
170
171
# File 'lib/ephemeris.rb', line 168

def get_vars(body) # GET VARIABLES FOR THE BODY
  b = @body[body]
  return b["N"], b["i"], b["w"], b["a"], b["e"], b["M"]
end

#hms_dms(ra, dec) ⇒ Object

Show HMS & DMS



88
89
90
91
92
93
94
# File 'lib/ephemeris.rb', line 88

def hms_dms(ra, dec) # Show HMS & DMS
  h, m, s = (ra/15).hms
  ra_hms  = "#{h.to_s.rjust(2)}h #{m.to_s.rjust(2)}m #{s.to_s.rjust(2)}s"
  d, m, s = dec.hms
  dec_dms = "#{d.to_s.rjust(3)}° #{m.to_s.rjust(2)}´ #{s.to_s.rjust(2)}˝"
  return ra_hms, dec_dms
end


137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# File 'lib/ephemeris.rb', line 137

def print

  def distf(d)
    int = d.to_i.to_s.rjust(2)
    f   = d % 1
    frc = "%.4f" % f
    return int + frc[1..5]
  end

  out   = "Planet  │ RA          │ Dec          │ Dist. │ Rise  │ Trans │ Set   \n"
  out  += "────────┼─────────────┼──────────────┼───────┼───────┼───────┼────── \n"

  #["sun", "moon", "mercury", "venus", "mars", "jupiter", "saturn", "uranus", "neptune"].each do |p|
  ["mercury", "venus", "mars", "jupiter", "saturn", "uranus", "neptune"].each do |p|
    o     = self.body_calc(p)
    n_o   = (p[0].upcase + p[1..]).ljust(7)
    ra_o  = o[3].ljust(11)
    dec_o = o[4].ljust(12)
    d_o   = distf(o[2])[0..-3]
    ris_o = o[5][0..-4].rjust(5)
    tra_o = o[6][0..-4].rjust(5)
    set_o = o[7][0..-4].rjust(5)

    out  += "#{n_o }#{ra_o    }#{dec_o    }#{d_o }#{ris_o}#{tra_o}#{set_o} \n"
  end
  return out
end

#rts(ra, dec) ⇒ Object



116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# File 'lib/ephemeris.rb', line 116

def rts(ra, dec)
  pi      = Math::PI
  transit = (ra - @ls - @lon)/15 + 12 + @tz
  transit = (transit + 24) % 24
  cos_lha = (-Math.sin(@lat.deg) * Math.sin(dec.deg)) / (Math.cos(@lat.deg) * Math.cos(dec.deg))
  if cos_lha < -1
    rise  = "always"
    set   = "never"
  elsif cos_lha > 1
    rise  = "never"
    set   = "always"
  else
    lha   = Math.acos(cos_lha) * 180/pi
    lha_h = lha/15
    rise  = ((transit - lha_h + 24) % 24).to_hms
    set   = ((transit + lha_h + 24) % 24).to_hms
  end
  trans = transit.to_hms
  return rise, trans, set
end