Module: LLaMACpp
- Defined in:
- lib/llama_cpp.rb,
lib/llama_cpp/version.rb,
ext/llama_cpp/llama_cpp.cpp
Overview
llama_cpp.rb provides Ruby bindings for the llama.cpp.
Constant Summary collapse
- Params =
Class alias to match interface of whispercpp gem.
ContextParams
- VERSION =
The version of llama_cpp.rb you install.
'0.3.8'
- LLAMA_CPP_VERSION =
The version of llama.cpp bundled with llama_cpp.rb.
'master-097e121'
- LLAMA_MAX_DEVICES =
INT2NUM(LLAMA_MAX_DEVICES)
- LLAMA_FTYPE_ALL_F32 =
INT2NUM(LLAMA_FTYPE_ALL_F32)
- LLAMA_FTYPE_MOSTLY_F16 =
INT2NUM(LLAMA_FTYPE_MOSTLY_F16)
- LLAMA_FTYPE_MOSTLY_Q4_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_0)
- LLAMA_FTYPE_MOSTLY_Q4_1 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_1)
- LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16)
- LLAMA_FTYPE_MOSTLY_Q8_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q8_0)
- LLAMA_FTYPE_MOSTLY_Q5_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_0)
- LLAMA_FTYPE_MOSTLY_Q5_1 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_1)
- LLAMA_FTYPE_MOSTLY_Q2_K =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q2_K)
- LLAMA_FTYPE_MOSTLY_Q3_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q3_K_S)
- LLAMA_FTYPE_MOSTLY_Q3_K_M =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q3_K_M)
- LLAMA_FTYPE_MOSTLY_Q3_K_L =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q3_K_L)
- LLAMA_FTYPE_MOSTLY_Q4_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_K_S)
- LLAMA_FTYPE_MOSTLY_Q4_K_M =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_K_M)
- LLAMA_FTYPE_MOSTLY_Q5_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_K_S)
- LLAMA_FTYPE_MOSTLY_Q5_K_M =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_K_M)
- LLAMA_FTYPE_MOSTLY_Q6_K =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q6_K)
- LLAMA_GRETYPE_END =
INT2NUM(LLAMA_GRETYPE_END)
- LLAMA_GRETYPE_ALT =
INT2NUM(LLAMA_GRETYPE_ALT)
- LLAMA_GRETYPE_RULE_REF =
INT2NUM(LLAMA_GRETYPE_RULE_REF)
- LLAMA_GRETYPE_CHAR =
INT2NUM(LLAMA_GRETYPE_CHAR)
- LLAMA_GRETYPE_CHAR_NOT =
INT2NUM(LLAMA_GRETYPE_CHAR_NOT)
- LLAMA_GRETYPE_CHAR_RNG_UPPER =
INT2NUM(LLAMA_GRETYPE_CHAR_RNG_UPPER)
- LLAMA_GRETYPE_CHAR_ALT =
INT2NUM(LLAMA_GRETYPE_CHAR_ALT)
- LLAMA_FILE_MAGIC_GGJT =
rb_str_new2(ss_magic.str().c_str())
- LLAMA_FILE_MAGIC_GGLA =
rb_str_new2(ss_magic.str().c_str())
- LLAMA_FILE_MAGIC_GGMF =
rb_str_new2(ss_magic.str().c_str())
- LLAMA_FILE_MAGIC_GGML =
rb_str_new2(ss_magic.str().c_str())
- LLAMA_FILE_MAGIC_GGSN =
rb_str_new2(ss_magic.str().c_str())
- LLAMA_FILE_MAGIC =
rb_str_new2(ss_magic.str().c_str())
- LLAMA_FILE_MAGIC_UNVERSIONED =
rb_str_new2(ss_magic.str().c_str())
- LLAMA_SESSION_MAGIC =
rb_str_new2(ss_magic.str().c_str())
- LLAMA_DEFAULT_SEED =
rb_str_new2(ss_magic.str().c_str())
- LLAMA_FILE_VERSION =
rb_str_new2(std::to_string(LLAMA_FILE_VERSION).c_str())
- LLAMA_SESSION_VERSION =
rb_str_new2(std::to_string(LLAMA_SESSION_VERSION).c_str())
Class Method Summary collapse
- .backend_free ⇒ Object
-
.backend_init(*args) ⇒ Object
module functions.
-
.generate(context, prompt, n_predict: 128, n_threads: 1, n_keep: 10, n_batch: 512, repeat_last_n: 64, repeat_penalty: 1.1, frequency: 0.0, presence: 0.0, top_k: 40, top_p: 0.95, tfs_z: 1.0, typical_p: 1.0, temperature: 0.8) ⇒ String
Generates sentences following the given prompt for operation check.
- .max_devices ⇒ Object
- .mlock_supported? ⇒ Boolean
- .mmap_supported? ⇒ Boolean
- .model_quantize(*args) ⇒ Object
- .print_system_info ⇒ Object
- .token_bos ⇒ Object
- .token_eos ⇒ Object
- .token_nl ⇒ Object
Class Method Details
.backend_free ⇒ Object
2439 2440 2441 2442 2443 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 2439 static VALUE rb_llama_llama_backend_free(VALUE self) { llama_backend_free(); return Qnil; } |
.backend_init(*args) ⇒ Object
module functions
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 2426
static VALUE rb_llama_llama_backend_init(int argc, VALUE* argv, VALUE self) {
VALUE kw_args = Qnil;
ID kw_table[1] = { rb_intern("numa") };
VALUE kw_values[1] = { Qundef };
rb_scan_args(argc, argv, ":", &kw_args);
rb_get_kwargs(kw_args, kw_table, 0, 1, kw_values);
const bool numa = kw_values[0] == Qundef ? false : (RTEST(kw_values[0]) ? true : false);
llama_backend_init(numa);
return Qnil;
}
|
.generate(context, prompt, n_predict: 128, n_threads: 1, n_keep: 10, n_batch: 512, repeat_last_n: 64, repeat_penalty: 1.1, frequency: 0.0, presence: 0.0, top_k: 40, top_p: 0.95, tfs_z: 1.0, typical_p: 1.0, temperature: 0.8) ⇒ String
Generates sentences following the given prompt for operation check.
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
# File 'lib/llama_cpp.rb', line 31 def generate(context, prompt, # rubocop:disable Metrics/AbcSize, Metrics/CyclomaticComplexity, Metrics/MethodLength, Metrics/ParameterLists, Metrics/PerceivedComplexity n_predict: 128, n_threads: 1, n_keep: 10, n_batch: 512, repeat_last_n: 64, repeat_penalty: 1.1, frequency: 0.0, presence: 0.0, top_k: 40, top_p: 0.95, tfs_z: 1.0, typical_p: 1.0, temperature: 0.8) raise ArgumentError, 'context must be an instance of LLaMACpp::Context' unless context.is_a?(LLaMACpp::Context) raise ArgumentError, 'prompt must be a String' unless prompt.is_a?(String) spaced_prompt = " #{prompt}" embd_input = context.tokenize(text: spaced_prompt, add_bos: true) n_ctx = context.n_ctx raise ArgumentError, "prompt is too long #{embd_input.size} tokens, maximum is #{n_ctx - 4}" if embd_input.size > n_ctx - 4 last_n_tokens = [0] * n_ctx embd = [] n_consumed = 0 n_past = 0 n_remain = n_predict n_vocab = context.n_vocab output = [] while n_remain != 0 unless embd.empty? if n_past + embd.size > n_ctx n_left = n_past - n_keep n_past = n_keep embd.insert(0, last_n_tokens[(n_ctx - (n_left / 2) - embd.size)...-embd.size]) end context.eval(tokens: embd, n_past: n_past, n_threads: n_threads) end n_past += embd.size embd.clear if embd_input.size <= n_consumed logits = context.logits base_candidates = Array.new(n_vocab) { |i| LLaMACpp::TokenData.new(id: i, logit: logits[i], p: 0.0) } candidates = LLaMACpp::TokenDataArray.new(base_candidates) # apply penalties last_n_repeat = [last_n_tokens.size, repeat_last_n, n_ctx].min context.sample_repetition_penalty(candidates, last_n_tokens[-last_n_repeat..], penalty: repeat_penalty) context.sample_frequency_and_presence_penalties( candidates, last_n_tokens[-last_n_repeat..], frequency: frequency, presence: presence ) # temperature sampling context.sample_top_k(candidates, k: top_k) context.sample_tail_free(candidates, z: tfs_z) context.sample_typical(candidates, prob: typical_p) context.sample_top_p(candidates, prob: top_p) context.sample_temperature(candidates, temperature: temperature) id = context.sample_token(candidates) last_n_tokens.shift last_n_tokens.push(id) embd.push(id) n_remain -= 1 else while embd_input.size > n_consumed embd.push(embd_input[n_consumed]) last_n_tokens.shift last_n_tokens.push(embd_input[n_consumed]) n_consumed += 1 break if embd.size >= n_batch end end embd.each { |token| output << context.token_to_str(token) } break if !embd.empty? && embd[-1] == LLaMACpp.token_eos end output.join.delete_prefix(spaced_prompt).strip end |
.max_devices ⇒ Object
2502 2503 2504 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 2502 static VALUE rb_llama_max_devices(VALUE self) { return INT2NUM(llama_max_devices()); } |
.mlock_supported? ⇒ Boolean
2498 2499 2500 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 2498 static VALUE rb_llama_mlock_supported(VALUE self) { return llama_mlock_supported() ? Qtrue : Qfalse; } |
.mmap_supported? ⇒ Boolean
2494 2495 2496 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 2494 static VALUE rb_llama_mmap_supported(VALUE self) { return llama_mmap_supported() ? Qtrue : Qfalse; } |
.model_quantize(*args) ⇒ Object
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 2445
static VALUE rb_llama_model_quantize(int argc, VALUE* argv, VALUE self) {
VALUE kw_args = Qnil;
ID kw_table[3] = { rb_intern("input_path"), rb_intern("output_path"), rb_intern("params") };
VALUE kw_values[3] = { Qundef, Qundef, Qundef };
rb_scan_args(argc, argv, ":", &kw_args);
rb_get_kwargs(kw_args, kw_table, 3, 0, kw_values);
if (!RB_TYPE_P(kw_values[0], T_STRING)) {
rb_raise(rb_eArgError, "input_path must be a string");
return Qnil;
}
if (!RB_TYPE_P(kw_values[1], T_STRING)) {
rb_raise(rb_eArgError, "output_path must be a string");
return Qnil;
}
if (!rb_obj_is_kind_of(kw_values[2], rb_cLLaMAModelQuantizeParams)) {
rb_raise(rb_eArgError, "params must be a ModelQuantizeParams");
return Qnil;
}
const char* input_path = StringValueCStr(kw_values[0]);
const char* output_path = StringValueCStr(kw_values[1]);
LLaMAModelQuantizeParamsWrapper* wrapper = RbLLaMAModelQuantizeParams::get_llama_model_quantize_params(kw_values[2]);
if (llama_model_quantize(input_path, output_path, &(wrapper->params)) != 0) {
rb_raise(rb_eRuntimeError, "Failed to quantize model");
return Qnil;
}
return Qnil;
}
|
.print_system_info ⇒ Object
2489 2490 2491 2492 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 2489 static VALUE rb_llama_print_system_info(VALUE self) { const char* result = llama_print_system_info(); return rb_utf8_str_new_cstr(result); } |
.token_bos ⇒ Object
2477 2478 2479 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 2477 static VALUE rb_llama_token_bos(VALUE self) { return INT2NUM(llama_token_bos()); } |
.token_eos ⇒ Object
2481 2482 2483 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 2481 static VALUE rb_llama_token_eos(VALUE self) { return INT2NUM(llama_token_eos()); } |
.token_nl ⇒ Object
2485 2486 2487 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 2485 static VALUE rb_llama_token_nl(VALUE self) { return INT2NUM(llama_token_nl()); } |