Module: LLaMACpp

Defined in:
lib/llama_cpp.rb,
lib/llama_cpp/version.rb,
ext/llama_cpp/llama_cpp.cpp

Overview

llama_cpp.rb provides Ruby bindings for the llama.cpp.

Constant Summary collapse

Params =

Class alias to match interface of whispercpp gem.

ContextParams
VERSION =

The version of llama_cpp.rb you install.

'0.3.2'
LLAMA_CPP_VERSION =

The version of llama.cpp bundled with llama_cpp.rb.

'master-481f793'
LLAMA_MAX_DEVICES =
INT2NUM(LLAMA_MAX_DEVICES)
LLAMA_FTYPE_ALL_F32 =
INT2NUM(LLAMA_FTYPE_ALL_F32)
LLAMA_FTYPE_MOSTLY_F16 =
INT2NUM(LLAMA_FTYPE_MOSTLY_F16)
LLAMA_FTYPE_MOSTLY_Q4_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_0)
LLAMA_FTYPE_MOSTLY_Q4_1 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_1)
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16)
LLAMA_FTYPE_MOSTLY_Q8_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q8_0)
LLAMA_FTYPE_MOSTLY_Q5_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_0)
LLAMA_FTYPE_MOSTLY_Q5_1 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_1)
LLAMA_FTYPE_MOSTLY_Q2_K =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q2_K)
LLAMA_FTYPE_MOSTLY_Q3_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q3_K_S)
LLAMA_FTYPE_MOSTLY_Q3_K_M =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q3_K_M)
LLAMA_FTYPE_MOSTLY_Q3_K_L =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q3_K_L)
LLAMA_FTYPE_MOSTLY_Q4_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_K_S)
LLAMA_FTYPE_MOSTLY_Q4_K_M =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_K_M)
LLAMA_FTYPE_MOSTLY_Q5_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_K_S)
LLAMA_FTYPE_MOSTLY_Q5_K_M =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_K_M)
LLAMA_FTYPE_MOSTLY_Q6_K =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q6_K)
LLAMA_FILE_MAGIC_GGJT =
rb_str_new2(ss_magic.str().c_str())
LLAMA_FILE_MAGIC_GGLA =
rb_str_new2(ss_magic.str().c_str())
LLAMA_FILE_MAGIC_GGMF =
rb_str_new2(ss_magic.str().c_str())
LLAMA_FILE_MAGIC_GGML =
rb_str_new2(ss_magic.str().c_str())
LLAMA_FILE_MAGIC_GGSN =
rb_str_new2(ss_magic.str().c_str())
LLAMA_FILE_MAGIC =
rb_str_new2(ss_magic.str().c_str())
LLAMA_FILE_MAGIC_UNVERSIONED =
rb_str_new2(ss_magic.str().c_str())
LLAMA_SESSION_MAGIC =
rb_str_new2(ss_magic.str().c_str())
LLAMA_DEFAULT_SEED =
rb_str_new2(ss_magic.str().c_str())
LLAMA_FILE_VERSION =
rb_str_new2(std::to_string(LLAMA_FILE_VERSION).c_str())
LLAMA_SESSION_VERSION =
rb_str_new2(std::to_string(LLAMA_SESSION_VERSION).c_str())

Class Method Summary collapse

Class Method Details

.generate(context, prompt, n_predict: 128, n_threads: 1, n_keep: 10, n_batch: 512, repeat_last_n: 64, repeat_penalty: 1.1, frequency: 0.0, presence: 0.0, top_k: 40, top_p: 0.95, tfs_z: 1.0, typical_p: 1.0, temperature: 0.8) ⇒ String

Generates sentences following the given prompt for operation check.

Parameters:

  • context (LLaMACpp::Context)

    The context to use.

  • prompt (String)

    The prompt to start generation with.

  • n_predict (Integer) (defaults to: 128)

    The number of tokens to predict.

  • n_threads (Integer) (defaults to: 1)

    The number of threads.

  • n_keep (Integer) (defaults to: 10)

    The number of tokens to keep in the context.

  • n_batch (Integer) (defaults to: 512)

    The number of tokens to process in a batch.

  • repeat_last_n (Integer) (defaults to: 64)

    The number of tokens to consider for repetition penalty.

  • repeat_penalty (Float) (defaults to: 1.1)

    The repetition penalty.

  • frequency (Float) (defaults to: 0.0)

    The frequency penalty.

  • presence (Float) (defaults to: 0.0)

    The presence penalty.

  • top_k (Integer) (defaults to: 40)

    The number of tokens to consider for top-k sampling.

  • top_p (Float) (defaults to: 0.95)

    The probability threshold for nucleus sampling.

  • tfs_z (Float) (defaults to: 1.0)

    The z parameter for tail-free sampling.

  • typical_p (Float) (defaults to: 1.0)

    The probability for typical sampling.

  • temperature (Float) (defaults to: 0.8)

    The temperature for temperature sampling.

Returns:

  • (String)

Raises:

  • (ArgumentError)


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# File 'lib/llama_cpp.rb', line 31

def generate(context, prompt, # rubocop:disable Metrics/AbcSize, Metrics/CyclomaticComplexity, Metrics/MethodLength, Metrics/ParameterLists, Metrics/PerceivedComplexity
             n_predict: 128, n_threads: 1, n_keep: 10, n_batch: 512, repeat_last_n: 64,
             repeat_penalty: 1.1, frequency: 0.0, presence: 0.0, top_k: 40,
             top_p: 0.95, tfs_z: 1.0, typical_p: 1.0, temperature: 0.8)
  raise ArgumentError, 'context must be an instance of LLaMACpp::Context' unless context.is_a?(LLaMACpp::Context)
  raise ArgumentError, 'prompt must be a String' unless prompt.is_a?(String)

  spaced_prompt = " #{prompt}"
  embd_input = context.tokenize(text: spaced_prompt, add_bos: true)

  n_ctx = context.n_ctx
  raise ArgumentError, "prompt is too long #{embd_input.size} tokens, maximum is #{n_ctx - 4}" if embd_input.size > n_ctx - 4

  last_n_tokens = [0] * n_ctx

  embd = []
  n_consumed = 0
  n_past = 0
  n_remain = n_predict
  n_vocab = context.n_vocab
  output = []

  while n_remain != 0
    unless embd.empty?
      if n_past + embd.size > n_ctx
        n_left = n_past - n_keep
        n_past = n_keep
        embd.insert(0, last_n_tokens[(n_ctx - (n_left / 2) - embd.size)...-embd.size])
      end

      context.eval(tokens: embd, n_past: n_past, n_threads: n_threads)
    end

    n_past += embd.size
    embd.clear

    if embd_input.size <= n_consumed
      logits = context.logits
      base_candidates = Array.new(n_vocab) { |i| LLaMACpp::TokenData.new(id: i, logit: logits[i], p: 0.0) }
      candidates = LLaMACpp::TokenDataArray.new(base_candidates)

      # apply penalties
      last_n_repeat = [last_n_tokens.size, repeat_last_n, n_ctx].min
      context.sample_repetition_penalty(candidates, last_n_tokens[-last_n_repeat..], penalty: repeat_penalty)
      context.sample_frequency_and_presence_penalties(
        candidates, last_n_tokens[-last_n_repeat..], frequency: frequency, presence: presence
      )

      # temperature sampling
      context.sample_top_k(candidates, k: top_k)
      context.sample_tail_free(candidates, z: tfs_z)
      context.sample_typical(candidates, prob: typical_p)
      context.sample_top_p(candidates, prob: top_p)
      context.sample_temperature(candidates, temperature: temperature)
      id = context.sample_token(candidates)

      last_n_tokens.shift
      last_n_tokens.push(id)

      embd.push(id)
      n_remain -= 1
    else
      while embd_input.size > n_consumed
        embd.push(embd_input[n_consumed])
        last_n_tokens.shift
        last_n_tokens.push(embd_input[n_consumed])
        n_consumed += 1
        break if embd.size >= n_batch
      end
    end

    embd.each { |token| output << context.token_to_str(token) }

    break if !embd.empty? && embd[-1] == LLaMACpp.token_eos
  end

  output.join.delete_prefix(spaced_prompt).strip
end

.init_backend(*args) ⇒ Object

module functions



1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
# File 'ext/llama_cpp/llama_cpp.cpp', line 1943

static VALUE rb_llama_llama_init_backend(int argc, VALUE* argv, VALUE self) {
  VALUE kw_args = Qnil;
  ID kw_table[1] = { rb_intern("numa") };
  VALUE kw_values[1] = { Qundef };
  rb_scan_args(argc, argv, ":", &kw_args);
  rb_get_kwargs(kw_args, kw_table, 0, 1, kw_values);

  const bool numa = kw_values[0] == Qundef ? false : (RTEST ? true : false);
  llama_init_backend(numa);

  return Qnil;
}

.mlock_supported?Boolean

Returns:

  • (Boolean)


2009
2010
2011
# File 'ext/llama_cpp/llama_cpp.cpp', line 2009

static VALUE rb_llama_mlock_supported(VALUE self) {
  return llama_mlock_supported() ? Qtrue : Qfalse;
}

.mmap_supported?Boolean

Returns:

  • (Boolean)


2005
2006
2007
# File 'ext/llama_cpp/llama_cpp.cpp', line 2005

static VALUE rb_llama_mmap_supported(VALUE self) {
  return llama_mmap_supported() ? Qtrue : Qfalse;
}

.model_quantize(*args) ⇒ Object



1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
# File 'ext/llama_cpp/llama_cpp.cpp', line 1956

static VALUE rb_llama_model_quantize(int argc, VALUE* argv, VALUE self) {
  VALUE kw_args = Qnil;
  ID kw_table[3] = { rb_intern("input_path"), rb_intern("output_path"), rb_intern("params") };
  VALUE kw_values[3] = { Qundef, Qundef, Qundef };
  rb_scan_args(argc, argv, ":", &kw_args);
  rb_get_kwargs(kw_args, kw_table, 3, 0, kw_values);

  if (!RB_TYPE_P(kw_values[0], T_STRING)) {
    rb_raise(rb_eArgError, "input_path must be a string");
    return Qnil;
  }
  if (!RB_TYPE_P(kw_values[1], T_STRING)) {
    rb_raise(rb_eArgError, "output_path must be a string");
    return Qnil;
  }
  if (!rb_obj_is_kind_of(kw_values[2], rb_cLLaMAModelQuantizeParams)) {
    rb_raise(rb_eArgError, "params must be a ModelQuantizeParams");
    return Qnil;
  }

  const char* input_path = StringValueCStr(kw_values[0]);
  const char* output_path = StringValueCStr(kw_values[1]);
  LLaMAModelQuantizeParamsWrapper* wrapper = RbLLaMAModelQuantizeParams::get_llama_model_quantize_params(kw_values[2]);

  if (llama_model_quantize(input_path, output_path, &(wrapper->params)) != 0) {
    rb_raise(rb_eRuntimeError, "Failed to quantize model");
    return Qnil;
  }

  return Qnil;
}


2000
2001
2002
2003
# File 'ext/llama_cpp/llama_cpp.cpp', line 2000

static VALUE rb_llama_print_system_info(VALUE self) {
  const char* result = llama_print_system_info();
  return rb_utf8_str_new_cstr(result);
}

.token_bosObject



1988
1989
1990
# File 'ext/llama_cpp/llama_cpp.cpp', line 1988

static VALUE rb_llama_token_bos(VALUE self) {
  return INT2NUM(llama_token_bos());
}

.token_eosObject



1992
1993
1994
# File 'ext/llama_cpp/llama_cpp.cpp', line 1992

static VALUE rb_llama_token_eos(VALUE self) {
  return INT2NUM(llama_token_eos());
}

.token_nlObject



1996
1997
1998
# File 'ext/llama_cpp/llama_cpp.cpp', line 1996

static VALUE rb_llama_token_nl(VALUE self) {
  return INT2NUM(llama_token_nl());
}