Module: LLaMACpp
- Defined in:
- lib/llama_cpp.rb,
lib/llama_cpp/version.rb,
ext/llama_cpp/llama_cpp.cpp
Overview
llama_cpp.rb provides Ruby bindings for the llama.cpp.
Constant Summary collapse
- VERSION =
The version of llama_cpp.rb you install.
'0.14.1'
- LLAMA_CPP_VERSION =
The version of llama.cpp bundled with llama_cpp.rb.
'b2435'
- LLAMA_VOCAB_TYPE_NONE =
INT2NUM(LLAMA_VOCAB_TYPE_NONE)
- LLAMA_VOCAB_TYPE_SPM =
INT2NUM(LLAMA_VOCAB_TYPE_SPM)
- LLAMA_VOCAB_TYPE_BPE =
INT2NUM(LLAMA_VOCAB_TYPE_BPE)
- LLAMA_VOCAB_TYPE_WPM =
INT2NUM(LLAMA_VOCAB_TYPE_WPM)
- LLAMA_TOKEN_TYPE_UNDEFINED =
INT2NUM(LLAMA_TOKEN_TYPE_UNDEFINED)
- LLAMA_TOKEN_TYPE_NORMAL =
INT2NUM(LLAMA_TOKEN_TYPE_NORMAL)
- LLAMA_TOKEN_TYPE_UNKNOWN =
INT2NUM(LLAMA_TOKEN_TYPE_UNKNOWN)
- LLAMA_TOKEN_TYPE_CONTROL =
INT2NUM(LLAMA_TOKEN_TYPE_CONTROL)
- LLAMA_TOKEN_TYPE_USER_DEFINED =
INT2NUM(LLAMA_TOKEN_TYPE_USER_DEFINED)
- LLAMA_TOKEN_TYPE_UNUSED =
INT2NUM(LLAMA_TOKEN_TYPE_UNUSED)
- LLAMA_TOKEN_TYPE_BYTE =
INT2NUM(LLAMA_TOKEN_TYPE_BYTE)
- LLAMA_FTYPE_ALL_F32 =
INT2NUM(LLAMA_FTYPE_ALL_F32)
- LLAMA_FTYPE_MOSTLY_F16 =
INT2NUM(LLAMA_FTYPE_MOSTLY_F16)
- LLAMA_FTYPE_MOSTLY_Q4_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_0)
- LLAMA_FTYPE_MOSTLY_Q4_1 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_1)
- LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16)
- LLAMA_FTYPE_MOSTLY_Q8_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q8_0)
- LLAMA_FTYPE_MOSTLY_Q5_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_0)
- LLAMA_FTYPE_MOSTLY_Q5_1 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_1)
- LLAMA_FTYPE_MOSTLY_Q2_K =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q2_K)
- LLAMA_FTYPE_MOSTLY_Q3_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q3_K_S)
- LLAMA_FTYPE_MOSTLY_Q3_K_M =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q3_K_M)
- LLAMA_FTYPE_MOSTLY_Q3_K_L =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q3_K_L)
- LLAMA_FTYPE_MOSTLY_Q4_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_K_S)
- LLAMA_FTYPE_MOSTLY_Q4_K_M =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_K_M)
- LLAMA_FTYPE_MOSTLY_Q5_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_K_S)
- LLAMA_FTYPE_MOSTLY_Q5_K_M =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_K_M)
- LLAMA_FTYPE_MOSTLY_Q6_K =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q6_K)
- LLAMA_FTYPE_MOSTLY_IQ2_XXS =
INT2NUM(LLAMA_FTYPE_MOSTLY_IQ2_XXS)
- LLAMA_FTYPE_MOSTLY_IQ2_XS =
INT2NUM(LLAMA_FTYPE_MOSTLY_IQ2_XS)
- LLAMA_FTYPE_MOSTLY_Q2_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q2_K_S)
- LLAMA_FTYPE_MOSTLY_IQ3_XS =
INT2NUM(LLAMA_FTYPE_MOSTLY_IQ3_XS)
- LLAMA_FTYPE_MOSTLY_IQ3_XXS =
INT2NUM(LLAMA_FTYPE_MOSTLY_IQ3_XXS)
- LLAMA_FTYPE_MOSTLY_IQ1_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_IQ1_S)
- LLAMA_FTYPE_MOSTLY_IQ4_NL =
INT2NUM(LLAMA_FTYPE_MOSTLY_IQ4_NL)
- LLAMA_FTYPE_GUESSED =
INT2NUM(LLAMA_FTYPE_GUESSED)
- LLAMA_KV_OVERRIDE_TYPE_INT =
INT2NUM(LLAMA_KV_OVERRIDE_TYPE_INT)
- LLAMA_KV_OVERRIDE_TYPE_FLOAT =
INT2NUM(LLAMA_KV_OVERRIDE_TYPE_FLOAT)
- LLAMA_KV_OVERRIDE_TYPE_BOOL =
INT2NUM(LLAMA_KV_OVERRIDE_TYPE_BOOL)
- LLAMA_GRETYPE_END =
INT2NUM(LLAMA_GRETYPE_END)
- LLAMA_GRETYPE_ALT =
INT2NUM(LLAMA_GRETYPE_ALT)
- LLAMA_GRETYPE_RULE_REF =
INT2NUM(LLAMA_GRETYPE_RULE_REF)
- LLAMA_GRETYPE_CHAR =
INT2NUM(LLAMA_GRETYPE_CHAR)
- LLAMA_GRETYPE_CHAR_NOT =
INT2NUM(LLAMA_GRETYPE_CHAR_NOT)
- LLAMA_GRETYPE_CHAR_RNG_UPPER =
INT2NUM(LLAMA_GRETYPE_CHAR_RNG_UPPER)
- LLAMA_GRETYPE_CHAR_ALT =
INT2NUM(LLAMA_GRETYPE_CHAR_ALT)
- LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED =
INT2NUM(LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED)
- LLAMA_ROPE_SCALING_TYPE_NONE =
INT2NUM(LLAMA_ROPE_SCALING_TYPE_NONE)
- LLAMA_ROPE_SCALING_TYPE_LINEAR =
INT2NUM(LLAMA_ROPE_SCALING_TYPE_LINEAR)
- LLAMA_ROPE_SCALING_TYPE_YARN =
INT2NUM(LLAMA_ROPE_SCALING_TYPE_YARN)
- LLAMA_ROPE_SCALING_TYPE_MAX_VALUE =
INT2NUM(LLAMA_ROPE_SCALING_TYPE_MAX_VALUE)
- LLAMA_POOLING_TYPE_UNSPECIFIED =
INT2NUM(LLAMA_POOLING_TYPE_UNSPECIFIED)
- LLAMA_POOLING_TYPE_NONE =
INT2NUM(LLAMA_POOLING_TYPE_NONE)
- LLAMA_POOLING_TYPE_MEAN =
INT2NUM(LLAMA_POOLING_TYPE_MEAN)
- LLAMA_POOLING_TYPE_CLS =
INT2NUM(LLAMA_POOLING_TYPE_CLS)
- LLAMA_SPLIT_MODE_NONE =
INT2NUM(LLAMA_SPLIT_MODE_NONE)
- LLAMA_SPLIT_MODE_LAYER =
INT2NUM(LLAMA_SPLIT_MODE_LAYER)
- LLAMA_SPLIT_MODE_ROW =
INT2NUM(LLAMA_SPLIT_MODE_ROW)
- LLAMA_FILE_MAGIC_GGLA =
rb_str_new2(ss_magic.str().c_str())
- LLAMA_FILE_MAGIC_GGSN =
rb_str_new2(ss_magic.str().c_str())
- LLAMA_SESSION_MAGIC =
rb_str_new2(ss_magic.str().c_str())
- LLAMA_DEFAULT_SEED =
rb_str_new2(ss_magic.str().c_str())
- LLAMA_SESSION_VERSION =
rb_str_new2(std::to_string(LLAMA_SESSION_VERSION).c_str())
Class Method Summary collapse
- .backend_free ⇒ Object
-
.backend_init ⇒ Object
module functions.
-
.generate(context, prompt, n_predict: 128, n_keep: 10, n_batch: 512, repeat_last_n: 64, repeat_penalty: 1.1, frequency: 0.0, presence: 0.0, top_k: 40, top_p: 0.95, tfs_z: 1.0, typical_p: 1.0, temperature: 0.8) ⇒ String
Generates sentences following the given prompt for operation check.
- .max_devices ⇒ Object
- .model_quantize(*args) ⇒ Object
- .numa_init(strategy) ⇒ Object
- .print_system_info ⇒ Object
- .supports_gpu_offload? ⇒ Boolean
- .supports_mlock? ⇒ Boolean
- .supports_mmap? ⇒ Boolean
- .time_us ⇒ Object
Class Method Details
.backend_free ⇒ Object
3176 3177 3178 3179 3180 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 3176 static VALUE rb_llama_llama_backend_free(VALUE self) { llama_backend_free(); return Qnil; } |
.backend_init ⇒ Object
module functions
3170 3171 3172 3173 3174 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 3170 static VALUE rb_llama_llama_backend_init(VALUE self) { llama_backend_init(); return Qnil; } |
.generate(context, prompt, n_predict: 128, n_keep: 10, n_batch: 512, repeat_last_n: 64, repeat_penalty: 1.1, frequency: 0.0, presence: 0.0, top_k: 40, top_p: 0.95, tfs_z: 1.0, typical_p: 1.0, temperature: 0.8) ⇒ String
Generates sentences following the given prompt for operation check.
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
# File 'lib/llama_cpp.rb', line 27 def generate(context, prompt, # rubocop:disable Metrics/AbcSize, Metrics/CyclomaticComplexity, Metrics/MethodLength, Metrics/ParameterLists, Metrics/PerceivedComplexity n_predict: 128, n_keep: 10, n_batch: 512, repeat_last_n: 64, repeat_penalty: 1.1, frequency: 0.0, presence: 0.0, top_k: 40, top_p: 0.95, tfs_z: 1.0, typical_p: 1.0, temperature: 0.8) raise ArgumentError, 'context must be an instance of LLaMACpp::Context' unless context.is_a?(LLaMACpp::Context) raise ArgumentError, 'prompt must be a String' unless prompt.is_a?(String) spaced_prompt = " #{prompt}" embd_input = context.model.tokenize(text: spaced_prompt, add_bos: true) n_ctx = context.n_ctx raise ArgumentError, "prompt is too long #{embd_input.size} tokens, maximum is #{n_ctx - 4}" if embd_input.size > n_ctx - 4 last_n_tokens = [0] * n_ctx embd = [] n_consumed = 0 n_past = 0 n_remain = n_predict n_vocab = context.model.n_vocab output = [] while n_remain != 0 unless embd.empty? if n_past + embd.size > n_ctx n_left = n_past - n_keep n_past = n_keep embd.insert(0, last_n_tokens[(n_ctx - (n_left / 2) - embd.size)...-embd.size]) end context.decode(LLaMACpp::Batch.get_one(tokens: embd, n_tokens: embd.size, pos_zero: n_past, seq_id: 0)) end n_past += embd.size embd.clear if embd_input.size <= n_consumed logits = context.logits base_candidates = Array.new(n_vocab) { |i| LLaMACpp::TokenData.new(id: i, logit: logits[i], p: 0.0) } candidates = LLaMACpp::TokenDataArray.new(base_candidates) # apply penalties last_n_repeat = [last_n_tokens.size, repeat_last_n, n_ctx].min context.sample_repetition_penalties( candidates, last_n_tokens[-last_n_repeat..], penalty_repeat: repeat_penalty, penalty_freq: frequency, penalty_present: presence ) # temperature sampling context.sample_top_k(candidates, k: top_k) context.sample_tail_free(candidates, z: tfs_z) context.sample_typical(candidates, prob: typical_p) context.sample_top_p(candidates, prob: top_p) context.sample_temp(candidates, temp: temperature) id = context.sample_token(candidates) last_n_tokens.shift last_n_tokens.push(id) embd.push(id) n_remain -= 1 else while embd_input.size > n_consumed embd.push(embd_input[n_consumed]) last_n_tokens.shift last_n_tokens.push(embd_input[n_consumed]) n_consumed += 1 break if embd.size >= n_batch end end embd.each { |token| output << context.model.token_to_piece(token) } break if !embd.empty? && embd[-1] == context.model.token_eos end output.join.scrub('?').strip.delete_prefix(prompt).strip end |
.max_devices ⇒ Object
3234 3235 3236 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 3234 static VALUE rb_llama_max_devices(VALUE self) { return SIZET2NUM(llama_max_devices()); } |
.model_quantize(*args) ⇒ Object
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 3193
static VALUE rb_llama_model_quantize(int argc, VALUE* argv, VALUE self) {
VALUE kw_args = Qnil;
ID kw_table[3] = { rb_intern("input_path"), rb_intern("output_path"), rb_intern("params") };
VALUE kw_values[3] = { Qundef, Qundef, Qundef };
rb_scan_args(argc, argv, ":", &kw_args);
rb_get_kwargs(kw_args, kw_table, 3, 0, kw_values);
if (!RB_TYPE_P(kw_values[0], T_STRING)) {
rb_raise(rb_eArgError, "input_path must be a string");
return Qnil;
}
if (!RB_TYPE_P(kw_values[1], T_STRING)) {
rb_raise(rb_eArgError, "output_path must be a string");
return Qnil;
}
if (!rb_obj_is_kind_of(kw_values[2], rb_cLLaMAModelQuantizeParams)) {
rb_raise(rb_eArgError, "params must be a ModelQuantizeParams");
return Qnil;
}
const char* input_path = StringValueCStr(kw_values[0]);
const char* output_path = StringValueCStr(kw_values[1]);
LLaMAModelQuantizeParamsWrapper* wrapper = RbLLaMAModelQuantizeParams::get_llama_model_quantize_params(kw_values[2]);
if (llama_model_quantize(input_path, output_path, &(wrapper->params)) != 0) {
rb_raise(rb_eRuntimeError, "Failed to quantize model");
return Qnil;
}
return Qnil;
}
|
.numa_init(strategy) ⇒ Object
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 3182
static VALUE rb_llama_llama_numa_init(VALUE self, VALUE strategy) {
if (!RB_INTEGER_TYPE_P(strategy)) {
rb_raise(rb_eArgError, "strategy must be an integer");
return Qnil;
}
llama_numa_init(static_cast<enum ggml_numa_strategy>(NUM2INT(strategy)));
return Qnil;
}
|
.print_system_info ⇒ Object
3225 3226 3227 3228 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 3225 static VALUE rb_llama_print_system_info(VALUE self) { const char* result = llama_print_system_info(); return rb_utf8_str_new_cstr(result); } |
.supports_gpu_offload? ⇒ Boolean
3246 3247 3248 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 3246 static VALUE rb_llama_supports_gpu_offload(VALUE self) { return llama_supports_gpu_offload() ? Qtrue : Qfalse; } |
.supports_mlock? ⇒ Boolean
3242 3243 3244 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 3242 static VALUE rb_llama_supports_mlock(VALUE self) { return llama_supports_mlock() ? Qtrue : Qfalse; } |
.supports_mmap? ⇒ Boolean
3238 3239 3240 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 3238 static VALUE rb_llama_supports_mmap(VALUE self) { return llama_supports_mmap() ? Qtrue : Qfalse; } |
.time_us ⇒ Object
3230 3231 3232 |
# File 'ext/llama_cpp/llama_cpp.cpp', line 3230 static VALUE rb_llama_time_us(VALUE self) { return LONG2NUM(llama_time_us()); } |