Module: LLaMACpp

Defined in:
lib/llama_cpp.rb,
lib/llama_cpp/version.rb,
ext/llama_cpp/llama_cpp.cpp

Overview

llama_cpp.rb provides Ruby bindings for the llama.cpp.

Constant Summary collapse

VERSION =

The version of llama_cpp.rb you install.

'0.13.0'
LLAMA_CPP_VERSION =

The version of llama.cpp bundled with llama_cpp.rb.

'b2303'
LLAMA_VOCAB_TYPE_SPM =
INT2NUM(LLAMA_VOCAB_TYPE_SPM)
LLAMA_VOCAB_TYPE_BPE =
INT2NUM(LLAMA_VOCAB_TYPE_BPE)
LLAMA_VOCAB_TYPE_WPM =
INT2NUM(LLAMA_VOCAB_TYPE_WPM)
LLAMA_TOKEN_TYPE_UNDEFINED =
INT2NUM(LLAMA_TOKEN_TYPE_UNDEFINED)
LLAMA_TOKEN_TYPE_NORMAL =
INT2NUM(LLAMA_TOKEN_TYPE_NORMAL)
LLAMA_TOKEN_TYPE_UNKNOWN =
INT2NUM(LLAMA_TOKEN_TYPE_UNKNOWN)
LLAMA_TOKEN_TYPE_CONTROL =
INT2NUM(LLAMA_TOKEN_TYPE_CONTROL)
LLAMA_TOKEN_TYPE_USER_DEFINED =
INT2NUM(LLAMA_TOKEN_TYPE_USER_DEFINED)
LLAMA_TOKEN_TYPE_UNUSED =
INT2NUM(LLAMA_TOKEN_TYPE_UNUSED)
LLAMA_TOKEN_TYPE_BYTE =
INT2NUM(LLAMA_TOKEN_TYPE_BYTE)
LLAMA_FTYPE_ALL_F32 =
INT2NUM(LLAMA_FTYPE_ALL_F32)
LLAMA_FTYPE_MOSTLY_F16 =
INT2NUM(LLAMA_FTYPE_MOSTLY_F16)
LLAMA_FTYPE_MOSTLY_Q4_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_0)
LLAMA_FTYPE_MOSTLY_Q4_1 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_1)
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16)
LLAMA_FTYPE_MOSTLY_Q8_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q8_0)
LLAMA_FTYPE_MOSTLY_Q5_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_0)
LLAMA_FTYPE_MOSTLY_Q5_1 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_1)
LLAMA_FTYPE_MOSTLY_Q2_K =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q2_K)
LLAMA_FTYPE_MOSTLY_Q3_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q3_K_S)
LLAMA_FTYPE_MOSTLY_Q3_K_M =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q3_K_M)
LLAMA_FTYPE_MOSTLY_Q3_K_L =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q3_K_L)
LLAMA_FTYPE_MOSTLY_Q4_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_K_S)
LLAMA_FTYPE_MOSTLY_Q4_K_M =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_K_M)
LLAMA_FTYPE_MOSTLY_Q5_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_K_S)
LLAMA_FTYPE_MOSTLY_Q5_K_M =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_K_M)
LLAMA_FTYPE_MOSTLY_Q6_K =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q6_K)
LLAMA_FTYPE_MOSTLY_IQ2_XXS =
INT2NUM(LLAMA_FTYPE_MOSTLY_IQ2_XXS)
LLAMA_FTYPE_MOSTLY_IQ2_XS =
INT2NUM(LLAMA_FTYPE_MOSTLY_IQ2_XS)
LLAMA_FTYPE_MOSTLY_Q2_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q2_K_S)
LLAMA_FTYPE_MOSTLY_IQ3_XS =
INT2NUM(LLAMA_FTYPE_MOSTLY_IQ3_XS)
LLAMA_FTYPE_MOSTLY_IQ3_XXS =
INT2NUM(LLAMA_FTYPE_MOSTLY_IQ3_XXS)
LLAMA_FTYPE_MOSTLY_IQ1_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_IQ1_S)
LLAMA_FTYPE_MOSTLY_IQ4_NL =
INT2NUM(LLAMA_FTYPE_MOSTLY_IQ4_NL)
LLAMA_FTYPE_GUESSED =
INT2NUM(LLAMA_FTYPE_GUESSED)
LLAMA_KV_OVERRIDE_TYPE_INT =
INT2NUM(LLAMA_KV_OVERRIDE_TYPE_INT)
LLAMA_KV_OVERRIDE_TYPE_FLOAT =
INT2NUM(LLAMA_KV_OVERRIDE_TYPE_FLOAT)
LLAMA_KV_OVERRIDE_TYPE_BOOL =
INT2NUM(LLAMA_KV_OVERRIDE_TYPE_BOOL)
LLAMA_GRETYPE_END =
INT2NUM(LLAMA_GRETYPE_END)
LLAMA_GRETYPE_ALT =
INT2NUM(LLAMA_GRETYPE_ALT)
LLAMA_GRETYPE_RULE_REF =
INT2NUM(LLAMA_GRETYPE_RULE_REF)
LLAMA_GRETYPE_CHAR =
INT2NUM(LLAMA_GRETYPE_CHAR)
LLAMA_GRETYPE_CHAR_NOT =
INT2NUM(LLAMA_GRETYPE_CHAR_NOT)
LLAMA_GRETYPE_CHAR_RNG_UPPER =
INT2NUM(LLAMA_GRETYPE_CHAR_RNG_UPPER)
LLAMA_GRETYPE_CHAR_ALT =
INT2NUM(LLAMA_GRETYPE_CHAR_ALT)
LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED =
INT2NUM(LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED)
LLAMA_ROPE_SCALING_TYPE_NONE =
INT2NUM(LLAMA_ROPE_SCALING_TYPE_NONE)
LLAMA_ROPE_SCALING_TYPE_LINEAR =
INT2NUM(LLAMA_ROPE_SCALING_TYPE_LINEAR)
LLAMA_ROPE_SCALING_TYPE_YARN =
INT2NUM(LLAMA_ROPE_SCALING_TYPE_YARN)
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE =
INT2NUM(LLAMA_ROPE_SCALING_TYPE_MAX_VALUE)
LLAMA_POOLING_TYPE_NONE =
INT2NUM(LLAMA_POOLING_TYPE_NONE)
LLAMA_POOLING_TYPE_MEAN =
INT2NUM(LLAMA_POOLING_TYPE_MEAN)
LLAMA_POOLING_TYPE_CLS =
INT2NUM(LLAMA_POOLING_TYPE_CLS)
LLAMA_SPLIT_MODE_NONE =
INT2NUM(LLAMA_SPLIT_MODE_NONE)
LLAMA_SPLIT_MODE_LAYER =
INT2NUM(LLAMA_SPLIT_MODE_LAYER)
LLAMA_SPLIT_MODE_ROW =
INT2NUM(LLAMA_SPLIT_MODE_ROW)
LLAMA_FILE_MAGIC_GGLA =
rb_str_new2(ss_magic.str().c_str())
LLAMA_FILE_MAGIC_GGSN =
rb_str_new2(ss_magic.str().c_str())
LLAMA_SESSION_MAGIC =
rb_str_new2(ss_magic.str().c_str())
LLAMA_DEFAULT_SEED =
rb_str_new2(ss_magic.str().c_str())
LLAMA_SESSION_VERSION =
rb_str_new2(std::to_string(LLAMA_SESSION_VERSION).c_str())

Class Method Summary collapse

Class Method Details

.backend_freeObject



3074
3075
3076
3077
3078
# File 'ext/llama_cpp/llama_cpp.cpp', line 3074

static VALUE rb_llama_llama_backend_free(VALUE self) {
  llama_backend_free();

  return Qnil;
}

.backend_initObject

module functions



3068
3069
3070
3071
3072
# File 'ext/llama_cpp/llama_cpp.cpp', line 3068

static VALUE rb_llama_llama_backend_init(VALUE self) {
  llama_backend_init();

  return Qnil;
}

.generate(context, prompt, n_predict: 128, n_keep: 10, n_batch: 512, repeat_last_n: 64, repeat_penalty: 1.1, frequency: 0.0, presence: 0.0, top_k: 40, top_p: 0.95, tfs_z: 1.0, typical_p: 1.0, temperature: 0.8) ⇒ String

Generates sentences following the given prompt for operation check.

Parameters:

  • context (LLaMACpp::Context)

    The context to use.

  • prompt (String)

    The prompt to start generation with.

  • n_predict (Integer) (defaults to: 128)

    The number of tokens to predict.

  • n_keep (Integer) (defaults to: 10)

    The number of tokens to keep in the context.

  • n_batch (Integer) (defaults to: 512)

    The number of tokens to process in a batch.

  • repeat_last_n (Integer) (defaults to: 64)

    The number of tokens to consider for repetition penalty.

  • repeat_penalty (Float) (defaults to: 1.1)

    The repetition penalty.

  • frequency (Float) (defaults to: 0.0)

    The frequency penalty.

  • presence (Float) (defaults to: 0.0)

    The presence penalty.

  • top_k (Integer) (defaults to: 40)

    The number of tokens to consider for top-k sampling.

  • top_p (Float) (defaults to: 0.95)

    The probability threshold for nucleus sampling.

  • tfs_z (Float) (defaults to: 1.0)

    The z parameter for tail-free sampling.

  • typical_p (Float) (defaults to: 1.0)

    The probability for typical sampling.

  • temperature (Float) (defaults to: 0.8)

    The temperature for temperature sampling.

Returns:

  • (String)

Raises:

  • (ArgumentError)


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# File 'lib/llama_cpp.rb', line 27

def generate(context, prompt, # rubocop:disable Metrics/AbcSize, Metrics/CyclomaticComplexity, Metrics/MethodLength, Metrics/ParameterLists, Metrics/PerceivedComplexity
             n_predict: 128, n_keep: 10, n_batch: 512, repeat_last_n: 64,
             repeat_penalty: 1.1, frequency: 0.0, presence: 0.0, top_k: 40,
             top_p: 0.95, tfs_z: 1.0, typical_p: 1.0, temperature: 0.8)
  raise ArgumentError, 'context must be an instance of LLaMACpp::Context' unless context.is_a?(LLaMACpp::Context)
  raise ArgumentError, 'prompt must be a String' unless prompt.is_a?(String)

  spaced_prompt = " #{prompt}"
  embd_input = context.model.tokenize(text: spaced_prompt, add_bos: true)

  n_ctx = context.n_ctx
  raise ArgumentError, "prompt is too long #{embd_input.size} tokens, maximum is #{n_ctx - 4}" if embd_input.size > n_ctx - 4

  last_n_tokens = [0] * n_ctx

  embd = []
  n_consumed = 0
  n_past = 0
  n_remain = n_predict
  n_vocab = context.model.n_vocab
  output = []

  while n_remain != 0
    unless embd.empty?
      if n_past + embd.size > n_ctx
        n_left = n_past - n_keep
        n_past = n_keep
        embd.insert(0, last_n_tokens[(n_ctx - (n_left / 2) - embd.size)...-embd.size])
      end

      context.decode(LLaMACpp::Batch.get_one(tokens: embd, n_tokens: embd.size, pos_zero: n_past, seq_id: 0))
    end

    n_past += embd.size
    embd.clear

    if embd_input.size <= n_consumed
      logits = context.logits
      base_candidates = Array.new(n_vocab) { |i| LLaMACpp::TokenData.new(id: i, logit: logits[i], p: 0.0) }
      candidates = LLaMACpp::TokenDataArray.new(base_candidates)

      # apply penalties
      last_n_repeat = [last_n_tokens.size, repeat_last_n, n_ctx].min
      context.sample_repetition_penalties(
        candidates, last_n_tokens[-last_n_repeat..],
        penalty_repeat: repeat_penalty, penalty_freq: frequency, penalty_present: presence
      )

      # temperature sampling
      context.sample_top_k(candidates, k: top_k)
      context.sample_tail_free(candidates, z: tfs_z)
      context.sample_typical(candidates, prob: typical_p)
      context.sample_top_p(candidates, prob: top_p)
      context.sample_temp(candidates, temp: temperature)
      id = context.sample_token(candidates)

      last_n_tokens.shift
      last_n_tokens.push(id)

      embd.push(id)
      n_remain -= 1
    else
      while embd_input.size > n_consumed
        embd.push(embd_input[n_consumed])
        last_n_tokens.shift
        last_n_tokens.push(embd_input[n_consumed])
        n_consumed += 1
        break if embd.size >= n_batch
      end
    end

    embd.each { |token| output << context.model.token_to_piece(token) }

    break if !embd.empty? && embd[-1] == context.model.token_eos
  end

  output.join.scrub('?').strip.delete_prefix(prompt).strip
end

.max_devicesObject



3132
3133
3134
# File 'ext/llama_cpp/llama_cpp.cpp', line 3132

static VALUE rb_llama_max_devices(VALUE self) {
  return SIZET2NUM(llama_max_devices());
}

.model_quantize(*args) ⇒ Object



3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
# File 'ext/llama_cpp/llama_cpp.cpp', line 3091

static VALUE rb_llama_model_quantize(int argc, VALUE* argv, VALUE self) {
  VALUE kw_args = Qnil;
  ID kw_table[3] = { rb_intern("input_path"), rb_intern("output_path"), rb_intern("params") };
  VALUE kw_values[3] = { Qundef, Qundef, Qundef };
  rb_scan_args(argc, argv, ":", &kw_args);
  rb_get_kwargs(kw_args, kw_table, 3, 0, kw_values);

  if (!RB_TYPE_P(kw_values[0], T_STRING)) {
    rb_raise(rb_eArgError, "input_path must be a string");
    return Qnil;
  }
  if (!RB_TYPE_P(kw_values[1], T_STRING)) {
    rb_raise(rb_eArgError, "output_path must be a string");
    return Qnil;
  }
  if (!rb_obj_is_kind_of(kw_values[2], rb_cLLaMAModelQuantizeParams)) {
    rb_raise(rb_eArgError, "params must be a ModelQuantizeParams");
    return Qnil;
  }

  const char* input_path = StringValueCStr(kw_values[0]);
  const char* output_path = StringValueCStr(kw_values[1]);
  LLaMAModelQuantizeParamsWrapper* wrapper = RbLLaMAModelQuantizeParams::get_llama_model_quantize_params(kw_values[2]);

  if (llama_model_quantize(input_path, output_path, &(wrapper->params)) != 0) {
    rb_raise(rb_eRuntimeError, "Failed to quantize model");
    return Qnil;
  }

  return Qnil;
}

.numa_init(strategy) ⇒ Object



3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
# File 'ext/llama_cpp/llama_cpp.cpp', line 3080

static VALUE rb_llama_llama_numa_init(VALUE self, VALUE strategy) {
  if (!RB_INTEGER_TYPE_P(strategy)) {
    rb_raise(rb_eArgError, "strategy must be an integer");
    return Qnil;
  }

  llama_numa_init(static_cast<enum ggml_numa_strategy>(NUM2INT(strategy)));

  return Qnil;
}


3123
3124
3125
3126
# File 'ext/llama_cpp/llama_cpp.cpp', line 3123

static VALUE rb_llama_print_system_info(VALUE self) {
  const char* result = llama_print_system_info();
  return rb_utf8_str_new_cstr(result);
}

.supports_gpu_offload?Boolean

Returns:

  • (Boolean)


3144
3145
3146
# File 'ext/llama_cpp/llama_cpp.cpp', line 3144

static VALUE rb_llama_supports_gpu_offload(VALUE self) {
  return llama_supports_gpu_offload() ? Qtrue : Qfalse;
}

.supports_mlock?Boolean

Returns:

  • (Boolean)


3140
3141
3142
# File 'ext/llama_cpp/llama_cpp.cpp', line 3140

static VALUE rb_llama_supports_mlock(VALUE self) {
  return llama_supports_mlock() ? Qtrue : Qfalse;
}

.supports_mmap?Boolean

Returns:

  • (Boolean)


3136
3137
3138
# File 'ext/llama_cpp/llama_cpp.cpp', line 3136

static VALUE rb_llama_supports_mmap(VALUE self) {
  return llama_supports_mmap() ? Qtrue : Qfalse;
}

.time_usObject



3128
3129
3130
# File 'ext/llama_cpp/llama_cpp.cpp', line 3128

static VALUE rb_llama_time_us(VALUE self) {
  return LONG2NUM(llama_time_us());
}