Module: LLaMACpp

Defined in:
lib/llama_cpp.rb,
lib/llama_cpp/version.rb,
ext/llama_cpp/llama_cpp.cpp

Overview

llama_cpp.rb provides Ruby bindings for the llama.cpp.

Constant Summary collapse

VERSION =

The version of llama_cpp.rb you install.

'0.12.4'
LLAMA_CPP_VERSION =

The version of llama.cpp bundled with llama_cpp.rb.

'b2047'
LLAMA_VOCAB_TYPE_SPM =
INT2NUM(LLAMA_VOCAB_TYPE_SPM)
LLAMA_VOCAB_TYPE_BPE =
INT2NUM(LLAMA_VOCAB_TYPE_BPE)
LLAMA_TOKEN_TYPE_UNDEFINED =
INT2NUM(LLAMA_TOKEN_TYPE_UNDEFINED)
LLAMA_TOKEN_TYPE_NORMAL =
INT2NUM(LLAMA_TOKEN_TYPE_NORMAL)
LLAMA_TOKEN_TYPE_UNKNOWN =
INT2NUM(LLAMA_TOKEN_TYPE_UNKNOWN)
LLAMA_TOKEN_TYPE_CONTROL =
INT2NUM(LLAMA_TOKEN_TYPE_CONTROL)
LLAMA_TOKEN_TYPE_USER_DEFINED =
INT2NUM(LLAMA_TOKEN_TYPE_USER_DEFINED)
LLAMA_TOKEN_TYPE_UNUSED =
INT2NUM(LLAMA_TOKEN_TYPE_UNUSED)
LLAMA_TOKEN_TYPE_BYTE =
INT2NUM(LLAMA_TOKEN_TYPE_BYTE)
LLAMA_FTYPE_ALL_F32 =
INT2NUM(LLAMA_FTYPE_ALL_F32)
LLAMA_FTYPE_MOSTLY_F16 =
INT2NUM(LLAMA_FTYPE_MOSTLY_F16)
LLAMA_FTYPE_MOSTLY_Q4_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_0)
LLAMA_FTYPE_MOSTLY_Q4_1 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_1)
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16)
LLAMA_FTYPE_MOSTLY_Q8_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q8_0)
LLAMA_FTYPE_MOSTLY_Q5_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_0)
LLAMA_FTYPE_MOSTLY_Q5_1 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_1)
LLAMA_FTYPE_MOSTLY_Q2_K =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q2_K)
LLAMA_FTYPE_MOSTLY_Q3_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q3_K_S)
LLAMA_FTYPE_MOSTLY_Q3_K_M =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q3_K_M)
LLAMA_FTYPE_MOSTLY_Q3_K_L =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q3_K_L)
LLAMA_FTYPE_MOSTLY_Q4_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_K_S)
LLAMA_FTYPE_MOSTLY_Q4_K_M =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_K_M)
LLAMA_FTYPE_MOSTLY_Q5_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_K_S)
LLAMA_FTYPE_MOSTLY_Q5_K_M =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_K_M)
LLAMA_FTYPE_MOSTLY_Q6_K =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q6_K)
LLAMA_FTYPE_MOSTLY_IQ2_XXS =
INT2NUM(LLAMA_FTYPE_MOSTLY_IQ2_XXS)
LLAMA_FTYPE_MOSTLY_IQ2_XS =
INT2NUM(LLAMA_FTYPE_MOSTLY_IQ2_XS)
LLAMA_FTYPE_MOSTLY_Q2_K_S =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q2_K_S)
LLAMA_FTYPE_MOSTLY_Q3_K_XS =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q3_K_XS)
LLAMA_FTYPE_MOSTLY_IQ3_XXS =
INT2NUM(LLAMA_FTYPE_MOSTLY_IQ3_XXS)
LLAMA_FTYPE_GUESSED =
INT2NUM(LLAMA_FTYPE_GUESSED)
LLAMA_KV_OVERRIDE_INT =
INT2NUM(LLAMA_KV_OVERRIDE_INT)
LLAMA_KV_OVERRIDE_FLOAT =
INT2NUM(LLAMA_KV_OVERRIDE_FLOAT)
LLAMA_KV_OVERRIDE_BOOL =
INT2NUM(LLAMA_KV_OVERRIDE_BOOL)
LLAMA_GRETYPE_END =
INT2NUM(LLAMA_GRETYPE_END)
LLAMA_GRETYPE_ALT =
INT2NUM(LLAMA_GRETYPE_ALT)
LLAMA_GRETYPE_RULE_REF =
INT2NUM(LLAMA_GRETYPE_RULE_REF)
LLAMA_GRETYPE_CHAR =
INT2NUM(LLAMA_GRETYPE_CHAR)
LLAMA_GRETYPE_CHAR_NOT =
INT2NUM(LLAMA_GRETYPE_CHAR_NOT)
LLAMA_GRETYPE_CHAR_RNG_UPPER =
INT2NUM(LLAMA_GRETYPE_CHAR_RNG_UPPER)
LLAMA_GRETYPE_CHAR_ALT =
INT2NUM(LLAMA_GRETYPE_CHAR_ALT)
LLAMA_ROPE_SCALING_UNSPECIFIED =
INT2NUM(LLAMA_ROPE_SCALING_UNSPECIFIED)
LLAMA_ROPE_SCALING_NONE =
INT2NUM(LLAMA_ROPE_SCALING_NONE)
LLAMA_ROPE_SCALING_LINEAR =
INT2NUM(LLAMA_ROPE_SCALING_LINEAR)
LLAMA_ROPE_SCALING_YARN =
INT2NUM(LLAMA_ROPE_SCALING_YARN)
LLAMA_ROPE_SCALING_MAX_VALUE =
INT2NUM(LLAMA_ROPE_SCALING_MAX_VALUE)
LLAMA_SPLIT_NONE =
INT2NUM(LLAMA_SPLIT_NONE)
LLAMA_SPLIT_LAYER =
INT2NUM(LLAMA_SPLIT_LAYER)
LLAMA_SPLIT_ROW =
INT2NUM(LLAMA_SPLIT_ROW)
LLAMA_FILE_MAGIC_GGLA =
rb_str_new2(ss_magic.str().c_str())
LLAMA_FILE_MAGIC_GGSN =
rb_str_new2(ss_magic.str().c_str())
LLAMA_SESSION_MAGIC =
rb_str_new2(ss_magic.str().c_str())
LLAMA_DEFAULT_SEED =
rb_str_new2(ss_magic.str().c_str())
LLAMA_SESSION_VERSION =
rb_str_new2(std::to_string(LLAMA_SESSION_VERSION).c_str())

Class Method Summary collapse

Class Method Details

.backend_freeObject



3214
3215
3216
3217
3218
# File 'ext/llama_cpp/llama_cpp.cpp', line 3214

static VALUE rb_llama_llama_backend_free(VALUE self) {
  llama_backend_free();

  return Qnil;
}

.backend_init(*args) ⇒ Object

module functions



3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
# File 'ext/llama_cpp/llama_cpp.cpp', line 3201

static VALUE rb_llama_llama_backend_init(int argc, VALUE* argv, VALUE self) {
  VALUE kw_args = Qnil;
  ID kw_table[1] = { rb_intern("numa") };
  VALUE kw_values[1] = { Qundef };
  rb_scan_args(argc, argv, ":", &kw_args);
  rb_get_kwargs(kw_args, kw_table, 0, 1, kw_values);

  const bool numa = kw_values[0] == Qundef ? false : (RTEST(kw_values[0]) ? true : false);
  llama_backend_init(numa);

  return Qnil;
}

.generate(context, prompt, n_predict: 128, n_keep: 10, n_batch: 512, repeat_last_n: 64, repeat_penalty: 1.1, frequency: 0.0, presence: 0.0, top_k: 40, top_p: 0.95, tfs_z: 1.0, typical_p: 1.0, temperature: 0.8) ⇒ String

Generates sentences following the given prompt for operation check.

Parameters:

  • context (LLaMACpp::Context)

    The context to use.

  • prompt (String)

    The prompt to start generation with.

  • n_predict (Integer) (defaults to: 128)

    The number of tokens to predict.

  • n_keep (Integer) (defaults to: 10)

    The number of tokens to keep in the context.

  • n_batch (Integer) (defaults to: 512)

    The number of tokens to process in a batch.

  • repeat_last_n (Integer) (defaults to: 64)

    The number of tokens to consider for repetition penalty.

  • repeat_penalty (Float) (defaults to: 1.1)

    The repetition penalty.

  • frequency (Float) (defaults to: 0.0)

    The frequency penalty.

  • presence (Float) (defaults to: 0.0)

    The presence penalty.

  • top_k (Integer) (defaults to: 40)

    The number of tokens to consider for top-k sampling.

  • top_p (Float) (defaults to: 0.95)

    The probability threshold for nucleus sampling.

  • tfs_z (Float) (defaults to: 1.0)

    The z parameter for tail-free sampling.

  • typical_p (Float) (defaults to: 1.0)

    The probability for typical sampling.

  • temperature (Float) (defaults to: 0.8)

    The temperature for temperature sampling.

Returns:

  • (String)

Raises:

  • (ArgumentError)


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# File 'lib/llama_cpp.rb', line 27

def generate(context, prompt, # rubocop:disable Metrics/AbcSize, Metrics/CyclomaticComplexity, Metrics/MethodLength, Metrics/ParameterLists, Metrics/PerceivedComplexity
             n_predict: 128, n_keep: 10, n_batch: 512, repeat_last_n: 64,
             repeat_penalty: 1.1, frequency: 0.0, presence: 0.0, top_k: 40,
             top_p: 0.95, tfs_z: 1.0, typical_p: 1.0, temperature: 0.8)
  raise ArgumentError, 'context must be an instance of LLaMACpp::Context' unless context.is_a?(LLaMACpp::Context)
  raise ArgumentError, 'prompt must be a String' unless prompt.is_a?(String)

  spaced_prompt = " #{prompt}"
  embd_input = context.model.tokenize(text: spaced_prompt, add_bos: true)

  n_ctx = context.n_ctx
  raise ArgumentError, "prompt is too long #{embd_input.size} tokens, maximum is #{n_ctx - 4}" if embd_input.size > n_ctx - 4

  last_n_tokens = [0] * n_ctx

  embd = []
  n_consumed = 0
  n_past = 0
  n_remain = n_predict
  n_vocab = context.model.n_vocab
  output = []

  while n_remain != 0
    unless embd.empty?
      if n_past + embd.size > n_ctx
        n_left = n_past - n_keep
        n_past = n_keep
        embd.insert(0, last_n_tokens[(n_ctx - (n_left / 2) - embd.size)...-embd.size])
      end

      context.decode(LLaMACpp::Batch.get_one(tokens: embd, n_tokens: embd.size, pos_zero: n_past, seq_id: 0))
    end

    n_past += embd.size
    embd.clear

    if embd_input.size <= n_consumed
      logits = context.logits
      base_candidates = Array.new(n_vocab) { |i| LLaMACpp::TokenData.new(id: i, logit: logits[i], p: 0.0) }
      candidates = LLaMACpp::TokenDataArray.new(base_candidates)

      # apply penalties
      last_n_repeat = [last_n_tokens.size, repeat_last_n, n_ctx].min
      context.sample_repetition_penalties(
        candidates, last_n_tokens[-last_n_repeat..],
        penalty_repeat: repeat_penalty, penalty_freq: frequency, penalty_present: presence
      )

      # temperature sampling
      context.sample_top_k(candidates, k: top_k)
      context.sample_tail_free(candidates, z: tfs_z)
      context.sample_typical(candidates, prob: typical_p)
      context.sample_top_p(candidates, prob: top_p)
      context.sample_temp(candidates, temp: temperature)
      id = context.sample_token(candidates)

      last_n_tokens.shift
      last_n_tokens.push(id)

      embd.push(id)
      n_remain -= 1
    else
      while embd_input.size > n_consumed
        embd.push(embd_input[n_consumed])
        last_n_tokens.shift
        last_n_tokens.push(embd_input[n_consumed])
        n_consumed += 1
        break if embd.size >= n_batch
      end
    end

    embd.each { |token| output << context.model.token_to_piece(token) }

    break if !embd.empty? && embd[-1] == context.model.token_eos
  end

  output.join.scrub('?').strip.delete_prefix(prompt).strip
end

.max_devicesObject



3271
3272
3273
# File 'ext/llama_cpp/llama_cpp.cpp', line 3271

static VALUE rb_llama_max_devices(VALUE self) {
  return SIZET2NUM(llama_max_devices());
}

.mlock_supported?Boolean

Returns:

  • (Boolean)


3266
3267
3268
3269
# File 'ext/llama_cpp/llama_cpp.cpp', line 3266

static VALUE rb_llama_mlock_supported(VALUE self) {
  rb_warn("mlock_supported? is deprecated. Use supports_mlock? instead.");
  return llama_mlock_supported() ? Qtrue : Qfalse;
}

.mmap_supported?Boolean

Returns:

  • (Boolean)


3261
3262
3263
3264
# File 'ext/llama_cpp/llama_cpp.cpp', line 3261

static VALUE rb_llama_mmap_supported(VALUE self) {
  rb_warn("mmap_supported? is deprecated. Use supports_mmap? instead.");
  return llama_mmap_supported() ? Qtrue : Qfalse;
}

.model_quantize(*args) ⇒ Object



3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
# File 'ext/llama_cpp/llama_cpp.cpp', line 3220

static VALUE rb_llama_model_quantize(int argc, VALUE* argv, VALUE self) {
  VALUE kw_args = Qnil;
  ID kw_table[3] = { rb_intern("input_path"), rb_intern("output_path"), rb_intern("params") };
  VALUE kw_values[3] = { Qundef, Qundef, Qundef };
  rb_scan_args(argc, argv, ":", &kw_args);
  rb_get_kwargs(kw_args, kw_table, 3, 0, kw_values);

  if (!RB_TYPE_P(kw_values[0], T_STRING)) {
    rb_raise(rb_eArgError, "input_path must be a string");
    return Qnil;
  }
  if (!RB_TYPE_P(kw_values[1], T_STRING)) {
    rb_raise(rb_eArgError, "output_path must be a string");
    return Qnil;
  }
  if (!rb_obj_is_kind_of(kw_values[2], rb_cLLaMAModelQuantizeParams)) {
    rb_raise(rb_eArgError, "params must be a ModelQuantizeParams");
    return Qnil;
  }

  const char* input_path = StringValueCStr(kw_values[0]);
  const char* output_path = StringValueCStr(kw_values[1]);
  LLaMAModelQuantizeParamsWrapper* wrapper = RbLLaMAModelQuantizeParams::get_llama_model_quantize_params(kw_values[2]);

  if (llama_model_quantize(input_path, output_path, &(wrapper->params)) != 0) {
    rb_raise(rb_eRuntimeError, "Failed to quantize model");
    return Qnil;
  }

  return Qnil;
}


3252
3253
3254
3255
# File 'ext/llama_cpp/llama_cpp.cpp', line 3252

static VALUE rb_llama_print_system_info(VALUE self) {
  const char* result = llama_print_system_info();
  return rb_utf8_str_new_cstr(result);
}

.supports_gpu_offload?Boolean

Returns:

  • (Boolean)


3283
3284
3285
# File 'ext/llama_cpp/llama_cpp.cpp', line 3283

static VALUE rb_llama_supports_gpu_offload(VALUE self) {
  return llama_supports_gpu_offload() ? Qtrue : Qfalse;
}

.supports_mlock?Boolean

Returns:

  • (Boolean)


3279
3280
3281
# File 'ext/llama_cpp/llama_cpp.cpp', line 3279

static VALUE rb_llama_supports_mlock(VALUE self) {
  return llama_supports_mlock() ? Qtrue : Qfalse;
}

.supports_mmap?Boolean

Returns:

  • (Boolean)


3275
3276
3277
# File 'ext/llama_cpp/llama_cpp.cpp', line 3275

static VALUE rb_llama_supports_mmap(VALUE self) {
  return llama_supports_mmap() ? Qtrue : Qfalse;
}

.time_usObject



3257
3258
3259
# File 'ext/llama_cpp/llama_cpp.cpp', line 3257

static VALUE rb_llama_time_us(VALUE self) {
  return LONG2NUM(llama_time_us());
}