Module: LLaMACpp

Defined in:
lib/llama_cpp.rb,
lib/llama_cpp/client.rb,
lib/llama_cpp/version.rb,
ext/llama_cpp/llama_cpp.cpp

Overview

llama_cpp.rb provides Ruby bindings for the llama.cpp.

Defined Under Namespace

Classes: Client

Constant Summary collapse

Params =

Class alias to match interface of whispercpp gem.

ContextParams
VERSION =

The version of llama_cpp.rb you install.

'0.1.0'
LLAMA_CPP_VERSION =

The version of llama.cpp bundled with llama_cpp.rb.

'master-173d0e6'
LLAMA_FTYPE_ALL_F32 =
INT2NUM(LLAMA_FTYPE_ALL_F32)
LLAMA_FTYPE_MOSTLY_F16 =
INT2NUM(LLAMA_FTYPE_MOSTLY_F16)
LLAMA_FTYPE_MOSTLY_Q4_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_0)
LLAMA_FTYPE_MOSTLY_Q4_1 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_1)
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16)
LLAMA_FTYPE_MOSTLY_Q4_2 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q4_2)
LLAMA_FTYPE_MOSTLY_Q8_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q8_0)
LLAMA_FTYPE_MOSTLY_Q5_0 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_0)
LLAMA_FTYPE_MOSTLY_Q5_1 =
INT2NUM(LLAMA_FTYPE_MOSTLY_Q5_1)
LLAMA_FILE_VERSION =
rb_str_new2(std::to_string(LLAMA_FILE_VERSION).c_str())
LLAMA_FILE_MAGIC =
rb_str_new2(ss_magic.str().c_str())
LLAMA_FILE_MAGIC_UNVERSIONED =
rb_str_new2(ss_magic_unversioned.str().c_str())

Class Method Summary collapse

Class Method Details

.generate(context, prompt, n_predict: 128, n_threads: 1) ⇒ String

Generates sentences following the given prompt for operation check.

Parameters:

  • context (LLaMACpp::Context)

    The context to use.

  • prompt (String)

    The prompt to start generation with.

  • n_predict (Integer) (defaults to: 128)

    The number of tokens to predict.

  • n_threads (Integer) (defaults to: 1)

    The number of threads.

Returns:

  • (String)

Raises:

  • (ArgumentError)


21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# File 'lib/llama_cpp.rb', line 21

def generate(context, prompt, n_predict: 128, n_threads: 1) # rubocop:disable Metrics/AbcSize, Metrics/CyclomaticComplexity, Metrics/MethodLength, Metrics/PerceivedComplexity
  raise ArgumentError, 'context must be an instance of LLaMACpp::Context' unless context.is_a?(LLaMACpp::Context)
  raise ArgumentError, 'context must have loaded the model' if context.empty?
  raise ArgumentError, 'prompt must be a String' unless prompt.is_a?(String)

  spaced_prompt = " #{prompt}"
  embd_input = context.tokenize(text: spaced_prompt, add_bos: true)

  n_ctx = context.n_ctx
  raise ArgumentError, "prompt is too long #{embd_input.size} tokens, maximum is #{n_ctx - 4}" if embd_input.size > n_ctx - 4

  last_n_tokens = [0] * n_ctx

  embd = []
  n_consumed = 0
  n_keep = 10
  n_past = 0
  n_remain = n_predict
  repeat_last_n = 64
  repeat_penalty = 1.1
  frequency = 0.0
  presence = 0.0
  top_k = 40
  top_p = 0.95
  tfs_z = 1.0
  typical_p = 1.0
  temperature = 0.8
  n_batch = 512
  n_vocab = context.n_vocab
  output = []

  while n_remain != 0
    unless embd.empty?
      if n_past + embd.size > n_ctx
        n_left = n_past - n_keep
        n_past = n_keep
        embd.insert(0, last_n_tokens[(n_ctx - (n_left / 2) - embd.size)...-embd.size])
      end

      context.eval(tokens: embd, n_past: n_past, n_threads: n_threads)
    end

    n_past += embd.size
    embd.clear

    if embd_input.size <= n_consumed
      logits = context.logits
      base_candidates = Array.new(n_vocab) { |i| LLaMACpp::TokenData.new(id: i, logit: logits[i], p: 0.0) }
      candidates = LLaMACpp::TokenDataArray.new(base_candidates)

      # apply penalties
      last_n_repeat = [last_n_tokens.size, repeat_last_n, n_ctx].min
      context.sample_repetition_penalty(candidates, last_n_tokens[-last_n_repeat..], penalty: repeat_penalty)
      context.sample_frequency_and_presence_penalties(
        candidates, last_n_tokens[-last_n_repeat..], frequency: frequency, presence: presence
      )

      # temperature sampling
      context.sample_top_k(candidates, k: top_k)
      context.sample_tail_free(candidates, z: tfs_z)
      context.sample_typical(candidates, prob: typical_p)
      context.sample_top_p(candidates, prob: top_p)
      context.sample_temperature(candidates, temperature: temperature)
      id = context.sample_token(candidates)

      last_n_tokens.shift
      last_n_tokens.push(id)

      embd.push(id)
      n_remain -= 1
    else
      while embd_input.size > n_consumed
        embd.push(embd_input[n_consumed])
        last_n_tokens.shift
        last_n_tokens.push(embd_input[n_consumed])
        n_consumed += 1
        break if embd.size >= n_batch
      end
    end

    embd.each { |token| output << context.token_to_str(token) }

    break if !embd.empty? && embd[-1] == LLaMACpp.token_eos
  end

  output.join.delete_prefix(spaced_prompt).strip
end

.mlock_supported?Boolean

Returns:

  • (Boolean)


1389
1390
1391
# File 'ext/llama_cpp/llama_cpp.cpp', line 1389

static VALUE rb_llama_mlock_supported(VALUE self) {
  return llama_mlock_supported() ? Qtrue : Qfalse;
}

.mmap_supported?Boolean

Returns:

  • (Boolean)


1385
1386
1387
# File 'ext/llama_cpp/llama_cpp.cpp', line 1385

static VALUE rb_llama_mmap_supported(VALUE self) {
  return llama_mmap_supported() ? Qtrue : Qfalse;
}

.model_quantize(*args) ⇒ Object

module functions



1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
# File 'ext/llama_cpp/llama_cpp.cpp', line 1331

static VALUE rb_llama_model_quantize(int argc, VALUE* argv, VALUE self) {
  VALUE kw_args = Qnil;
  ID kw_table[4] = { rb_intern("input_path"), rb_intern("output_path"), rb_intern("ftype"), rb_intern("n_threads") };
  VALUE kw_values[4] = { Qundef, Qundef, Qundef, Qundef };
  rb_scan_args(argc, argv, ":", &kw_args);
  rb_get_kwargs(kw_args, kw_table, 3, 1, kw_values);

  if (!RB_TYPE_P(kw_values[0], T_STRING)) {
    rb_raise(rb_eArgError, "input_path must be a string");
    return Qnil;
  }
  if (!RB_TYPE_P(kw_values[1], T_STRING)) {
    rb_raise(rb_eArgError, "output_path must be a string");
    return Qnil;
  }
  if (!RB_INTEGER_TYPE_P(kw_values[2])) {
    rb_raise(rb_eArgError, "ftype must be an integer");
    return Qnil;
  }
  if (kw_values[3] != Qundef && !RB_INTEGER_TYPE_P(kw_values[3])) {
    rb_raise(rb_eArgError, "n_threads must be an integer");
    return Qnil;
  }

  const char* input_path = StringValueCStr(kw_values[0]);
  const char* output_path = StringValueCStr(kw_values[1]);
  const int ftype = NUM2INT(kw_values[2]);
  const int n_threads = kw_values[3] == Qundef ? 1 : NUM2INT(kw_values[3]);

  if (llama_model_quantize(input_path, output_path, (llama_ftype)ftype, n_threads) != 0) {
    rb_raise(rb_eRuntimeError, "Failed to quantize model");
    return Qnil;
  }

  return Qnil;
}


1380
1381
1382
1383
# File 'ext/llama_cpp/llama_cpp.cpp', line 1380

static VALUE rb_llama_print_system_info(VALUE self) {
  const char* result = llama_print_system_info();
  return rb_utf8_str_new_cstr(result);
}

.token_bosObject



1368
1369
1370
# File 'ext/llama_cpp/llama_cpp.cpp', line 1368

static VALUE rb_llama_token_bos(VALUE self) {
  return INT2NUM(llama_token_bos());
}

.token_eosObject



1372
1373
1374
# File 'ext/llama_cpp/llama_cpp.cpp', line 1372

static VALUE rb_llama_token_eos(VALUE self) {
  return INT2NUM(llama_token_eos());
}

.token_nlObject



1376
1377
1378
# File 'ext/llama_cpp/llama_cpp.cpp', line 1376

static VALUE rb_llama_token_nl(VALUE self) {
  return INT2NUM(llama_token_nl());
}