Class: Google::Cloud::DataLabeling::V1beta1::PrCurve

Inherits:
Object
  • Object
show all
Extended by:
Protobuf::MessageExts::ClassMethods
Includes:
Protobuf::MessageExts
Defined in:
proto_docs/google/cloud/datalabeling/v1beta1/evaluation.rb

Defined Under Namespace

Classes: ConfidenceMetricsEntry

Instance Attribute Summary collapse

Instance Attribute Details

#annotation_spec::Google::Cloud::DataLabeling::V1beta1::AnnotationSpec

Returns The annotation spec of the label for which the precision-recall curve calculated. If this field is empty, that means the precision-recall curve is an aggregate curve for all labels.

Returns:


136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# File 'proto_docs/google/cloud/datalabeling/v1beta1/evaluation.rb', line 136

class PrCurve
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # @!attribute [rw] confidence_threshold
  #   @return [::Float]
  #     Threshold used for this entry.
  #
  #     For classification tasks, this is a classification threshold: a
  #     predicted label is categorized as positive or negative (in the context of
  #     this point on the PR curve) based on whether the label's score meets this
  #     threshold.
  #
  #     For image object detection (bounding box) tasks, this is the
  #     [intersection-over-union
  #
  #     (IOU)](/vision/automl/object-detection/docs/evaluate#intersection-over-union)
  #     threshold for the context of this point on the PR curve.
  # @!attribute [rw] recall
  #   @return [::Float]
  #     Recall value.
  # @!attribute [rw] precision
  #   @return [::Float]
  #     Precision value.
  # @!attribute [rw] f1_score
  #   @return [::Float]
  #     Harmonic mean of recall and precision.
  # @!attribute [rw] recall_at1
  #   @return [::Float]
  #     Recall value for entries with label that has highest score.
  # @!attribute [rw] precision_at1
  #   @return [::Float]
  #     Precision value for entries with label that has highest score.
  # @!attribute [rw] f1_score_at1
  #   @return [::Float]
  #     The harmonic mean of {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#recall_at1 recall_at1} and {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#precision_at1 precision_at1}.
  # @!attribute [rw] recall_at5
  #   @return [::Float]
  #     Recall value for entries with label that has highest 5 scores.
  # @!attribute [rw] precision_at5
  #   @return [::Float]
  #     Precision value for entries with label that has highest 5 scores.
  # @!attribute [rw] f1_score_at5
  #   @return [::Float]
  #     The harmonic mean of {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#recall_at5 recall_at5} and {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#precision_at5 precision_at5}.
  class ConfidenceMetricsEntry
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end
end

#area_under_curve::Float

Returns Area under the precision-recall curve. Not to be confused with area under a receiver operating characteristic (ROC) curve.

Returns:

  • (::Float)

    Area under the precision-recall curve. Not to be confused with area under a receiver operating characteristic (ROC) curve.


136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# File 'proto_docs/google/cloud/datalabeling/v1beta1/evaluation.rb', line 136

class PrCurve
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # @!attribute [rw] confidence_threshold
  #   @return [::Float]
  #     Threshold used for this entry.
  #
  #     For classification tasks, this is a classification threshold: a
  #     predicted label is categorized as positive or negative (in the context of
  #     this point on the PR curve) based on whether the label's score meets this
  #     threshold.
  #
  #     For image object detection (bounding box) tasks, this is the
  #     [intersection-over-union
  #
  #     (IOU)](/vision/automl/object-detection/docs/evaluate#intersection-over-union)
  #     threshold for the context of this point on the PR curve.
  # @!attribute [rw] recall
  #   @return [::Float]
  #     Recall value.
  # @!attribute [rw] precision
  #   @return [::Float]
  #     Precision value.
  # @!attribute [rw] f1_score
  #   @return [::Float]
  #     Harmonic mean of recall and precision.
  # @!attribute [rw] recall_at1
  #   @return [::Float]
  #     Recall value for entries with label that has highest score.
  # @!attribute [rw] precision_at1
  #   @return [::Float]
  #     Precision value for entries with label that has highest score.
  # @!attribute [rw] f1_score_at1
  #   @return [::Float]
  #     The harmonic mean of {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#recall_at1 recall_at1} and {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#precision_at1 precision_at1}.
  # @!attribute [rw] recall_at5
  #   @return [::Float]
  #     Recall value for entries with label that has highest 5 scores.
  # @!attribute [rw] precision_at5
  #   @return [::Float]
  #     Precision value for entries with label that has highest 5 scores.
  # @!attribute [rw] f1_score_at5
  #   @return [::Float]
  #     The harmonic mean of {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#recall_at5 recall_at5} and {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#precision_at5 precision_at5}.
  class ConfidenceMetricsEntry
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end
end

#confidence_metrics_entries::Array<::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry>

Returns Entries that make up the precision-recall graph. Each entry is a "point" on the graph drawn for a different confidence_threshold.

Returns:


136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# File 'proto_docs/google/cloud/datalabeling/v1beta1/evaluation.rb', line 136

class PrCurve
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # @!attribute [rw] confidence_threshold
  #   @return [::Float]
  #     Threshold used for this entry.
  #
  #     For classification tasks, this is a classification threshold: a
  #     predicted label is categorized as positive or negative (in the context of
  #     this point on the PR curve) based on whether the label's score meets this
  #     threshold.
  #
  #     For image object detection (bounding box) tasks, this is the
  #     [intersection-over-union
  #
  #     (IOU)](/vision/automl/object-detection/docs/evaluate#intersection-over-union)
  #     threshold for the context of this point on the PR curve.
  # @!attribute [rw] recall
  #   @return [::Float]
  #     Recall value.
  # @!attribute [rw] precision
  #   @return [::Float]
  #     Precision value.
  # @!attribute [rw] f1_score
  #   @return [::Float]
  #     Harmonic mean of recall and precision.
  # @!attribute [rw] recall_at1
  #   @return [::Float]
  #     Recall value for entries with label that has highest score.
  # @!attribute [rw] precision_at1
  #   @return [::Float]
  #     Precision value for entries with label that has highest score.
  # @!attribute [rw] f1_score_at1
  #   @return [::Float]
  #     The harmonic mean of {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#recall_at1 recall_at1} and {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#precision_at1 precision_at1}.
  # @!attribute [rw] recall_at5
  #   @return [::Float]
  #     Recall value for entries with label that has highest 5 scores.
  # @!attribute [rw] precision_at5
  #   @return [::Float]
  #     Precision value for entries with label that has highest 5 scores.
  # @!attribute [rw] f1_score_at5
  #   @return [::Float]
  #     The harmonic mean of {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#recall_at5 recall_at5} and {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#precision_at5 precision_at5}.
  class ConfidenceMetricsEntry
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end
end

#mean_average_precision::Float

Returns Mean average prcision of this curve.

Returns:

  • (::Float)

    Mean average prcision of this curve.


136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# File 'proto_docs/google/cloud/datalabeling/v1beta1/evaluation.rb', line 136

class PrCurve
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # @!attribute [rw] confidence_threshold
  #   @return [::Float]
  #     Threshold used for this entry.
  #
  #     For classification tasks, this is a classification threshold: a
  #     predicted label is categorized as positive or negative (in the context of
  #     this point on the PR curve) based on whether the label's score meets this
  #     threshold.
  #
  #     For image object detection (bounding box) tasks, this is the
  #     [intersection-over-union
  #
  #     (IOU)](/vision/automl/object-detection/docs/evaluate#intersection-over-union)
  #     threshold for the context of this point on the PR curve.
  # @!attribute [rw] recall
  #   @return [::Float]
  #     Recall value.
  # @!attribute [rw] precision
  #   @return [::Float]
  #     Precision value.
  # @!attribute [rw] f1_score
  #   @return [::Float]
  #     Harmonic mean of recall and precision.
  # @!attribute [rw] recall_at1
  #   @return [::Float]
  #     Recall value for entries with label that has highest score.
  # @!attribute [rw] precision_at1
  #   @return [::Float]
  #     Precision value for entries with label that has highest score.
  # @!attribute [rw] f1_score_at1
  #   @return [::Float]
  #     The harmonic mean of {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#recall_at1 recall_at1} and {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#precision_at1 precision_at1}.
  # @!attribute [rw] recall_at5
  #   @return [::Float]
  #     Recall value for entries with label that has highest 5 scores.
  # @!attribute [rw] precision_at5
  #   @return [::Float]
  #     Precision value for entries with label that has highest 5 scores.
  # @!attribute [rw] f1_score_at5
  #   @return [::Float]
  #     The harmonic mean of {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#recall_at5 recall_at5} and {::Google::Cloud::DataLabeling::V1beta1::PrCurve::ConfidenceMetricsEntry#precision_at5 precision_at5}.
  class ConfidenceMetricsEntry
    include ::Google::Protobuf::MessageExts
    extend ::Google::Protobuf::MessageExts::ClassMethods
  end
end