Class: Google::Cloud::AIPlatform::V1::CustomJobSpec
- Inherits:
-
Object
- Object
- Google::Cloud::AIPlatform::V1::CustomJobSpec
- Extended by:
- Protobuf::MessageExts::ClassMethods
- Includes:
- Protobuf::MessageExts
- Defined in:
- proto_docs/google/cloud/aiplatform/v1/custom_job.rb
Overview
Represents the spec of a CustomJob.
Instance Attribute Summary collapse
-
#base_output_directory ⇒ ::Google::Cloud::AIPlatform::V1::GcsDestination
The Cloud Storage location to store the output of this CustomJob or HyperparameterTuningJob.
-
#enable_web_access ⇒ ::Boolean
Optional.
-
#network ⇒ ::String
Optional.
-
#reserved_ip_ranges ⇒ ::Array<::String>
Optional.
-
#scheduling ⇒ ::Google::Cloud::AIPlatform::V1::Scheduling
Scheduling options for a CustomJob.
-
#service_account ⇒ ::String
Specifies the service account for workload run-as account.
-
#tensorboard ⇒ ::String
Optional.
-
#worker_pool_specs ⇒ ::Array<::Google::Cloud::AIPlatform::V1::WorkerPoolSpec>
Required.
Instance Attribute Details
#base_output_directory ⇒ ::Google::Cloud::AIPlatform::V1::GcsDestination
Returns The Cloud Storage location to store the output of this CustomJob or HyperparameterTuningJob. For HyperparameterTuningJob, the baseOutputDirectory of each child CustomJob backing a Trial is set to a subdirectory of name id under its parent HyperparameterTuningJob's baseOutputDirectory.
The following Vertex AI environment variables will be passed to containers or python modules when this field is set:
For CustomJob:
- AIP_MODEL_DIR =
<base_output_directory>/model/
- AIP_CHECKPOINT_DIR =
<base_output_directory>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR =
<base_output_directory>/logs/
For CustomJob backing a Trial of HyperparameterTuningJob:
- AIP_MODEL_DIR =
<base_output_directory>/<trial_id>/model/
- AIP_CHECKPOINT_DIR =
<base_output_directory>/<trial_id>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR =
<base_output_directory>/<trial_id>/logs/
.
189 190 191 192 |
# File 'proto_docs/google/cloud/aiplatform/v1/custom_job.rb', line 189 class CustomJobSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#enable_web_access ⇒ ::Boolean
Returns Optional. Whether you want Vertex AI to enable interactive shell access to training containers.
If set to true
, you can access interactive shells at the URIs given
by CustomJob.web_access_uris or Trial.web_access_uris (within
HyperparameterTuningJob.trials).
189 190 191 192 |
# File 'proto_docs/google/cloud/aiplatform/v1/custom_job.rb', line 189 class CustomJobSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#network ⇒ ::String
Returns Optional. The full name of the Compute Engine
network to which the Job
should be peered. For example, projects/12345/global/networks/myVPC
.
Format
is of the form projects/{project}/global/networks/{network}
.
Where {project} is a project number, as in 12345
, and {network} is a
network name.
To specify this field, you must have already configured VPC Network Peering for Vertex AI.
If this field is left unspecified, the job is not peered with any network.
189 190 191 192 |
# File 'proto_docs/google/cloud/aiplatform/v1/custom_job.rb', line 189 class CustomJobSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#reserved_ip_ranges ⇒ ::Array<::String>
Returns Optional. A list of names for the reserved ip ranges under the VPC network that can be used for this job.
If set, we will deploy the job within the provided ip ranges. Otherwise, the job will be deployed to any ip ranges under the provided VPC network.
Example: ['vertex-ai-ip-range'].
189 190 191 192 |
# File 'proto_docs/google/cloud/aiplatform/v1/custom_job.rb', line 189 class CustomJobSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#scheduling ⇒ ::Google::Cloud::AIPlatform::V1::Scheduling
Returns Scheduling options for a CustomJob.
189 190 191 192 |
# File 'proto_docs/google/cloud/aiplatform/v1/custom_job.rb', line 189 class CustomJobSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#service_account ⇒ ::String
Returns Specifies the service account for workload run-as account. Users submitting jobs must have act-as permission on this run-as account. If unspecified, the Vertex AI Custom Code Service Agent for the CustomJob's project is used.
189 190 191 192 |
# File 'proto_docs/google/cloud/aiplatform/v1/custom_job.rb', line 189 class CustomJobSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#tensorboard ⇒ ::String
Returns Optional. The name of a Vertex AI Tensorboard resource to which this CustomJob
will upload Tensorboard logs.
Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}
.
189 190 191 192 |
# File 'proto_docs/google/cloud/aiplatform/v1/custom_job.rb', line 189 class CustomJobSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |
#worker_pool_specs ⇒ ::Array<::Google::Cloud::AIPlatform::V1::WorkerPoolSpec>
Returns Required. The spec of the worker pools including machine type and Docker image. All worker pools except the first one are optional and can be skipped by providing an empty value.
189 190 191 192 |
# File 'proto_docs/google/cloud/aiplatform/v1/custom_job.rb', line 189 class CustomJobSpec include ::Google::Protobuf::MessageExts extend ::Google::Protobuf::MessageExts::ClassMethods end |