Class: Google::Apis::DlpV2::GooglePrivacyDlpV2PrivacyMetric
- Inherits:
-
Object
- Object
- Google::Apis::DlpV2::GooglePrivacyDlpV2PrivacyMetric
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/dlp_v2/classes.rb,
lib/google/apis/dlp_v2/representations.rb,
lib/google/apis/dlp_v2/representations.rb
Overview
Privacy metric to compute for reidentification risk analysis.
Instance Attribute Summary collapse
-
#categorical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2CategoricalStatsConfig
Compute numerical stats over an individual column, including number of distinct values and value count distribution.
-
#delta_presence_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2DeltaPresenceEstimationConfig
δ-presence metric, used to estimate how likely it is for an attacker to figure out that one given individual appears in a de-identified dataset.
-
#k_anonymity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KAnonymityConfig
k-anonymity metric, used for analysis of reidentification risk.
-
#k_map_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KMapEstimationConfig
Reidentifiability metric.
-
#l_diversity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2LDiversityConfig
l-diversity metric, used for analysis of reidentification risk.
-
#numerical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2NumericalStatsConfig
Compute numerical stats over an individual column, including min, max, and quantiles.
Instance Method Summary collapse
-
#initialize(**args) ⇒ GooglePrivacyDlpV2PrivacyMetric
constructor
A new instance of GooglePrivacyDlpV2PrivacyMetric.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ GooglePrivacyDlpV2PrivacyMetric
Returns a new instance of GooglePrivacyDlpV2PrivacyMetric.
7403 7404 7405 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 7403 def initialize(**args) update!(**args) end |
Instance Attribute Details
#categorical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2CategoricalStatsConfig
Compute numerical stats over an individual column, including number of
distinct values and value count distribution.
Corresponds to the JSON property categoricalStatsConfig
7367 7368 7369 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 7367 def categorical_stats_config @categorical_stats_config end |
#delta_presence_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2DeltaPresenceEstimationConfig
δ-presence metric, used to estimate how likely it is for an attacker to figure
out that one given individual appears in a de-identified dataset. Similarly to
the k-map metric, we cannot compute δ-presence exactly without knowing the
attack dataset, so we use a statistical model instead.
Corresponds to the JSON property deltaPresenceEstimationConfig
7375 7376 7377 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 7375 def delta_presence_estimation_config @delta_presence_estimation_config end |
#k_anonymity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KAnonymityConfig
k-anonymity metric, used for analysis of reidentification risk.
Corresponds to the JSON property kAnonymityConfig
7380 7381 7382 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 7380 def k_anonymity_config @k_anonymity_config end |
#k_map_estimation_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2KMapEstimationConfig
Reidentifiability metric. This corresponds to a risk model similar to what is
called "journalist risk" in the literature, except the attack dataset is
statistically modeled instead of being perfectly known. This can be done using
publicly available data (like the US Census), or using a custom statistical
model (indicated as one or several BigQuery tables), or by extrapolating from
the distribution of values in the input dataset.
Corresponds to the JSON property kMapEstimationConfig
7390 7391 7392 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 7390 def k_map_estimation_config @k_map_estimation_config end |
#l_diversity_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2LDiversityConfig
l-diversity metric, used for analysis of reidentification risk.
Corresponds to the JSON property lDiversityConfig
7395 7396 7397 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 7395 def l_diversity_config @l_diversity_config end |
#numerical_stats_config ⇒ Google::Apis::DlpV2::GooglePrivacyDlpV2NumericalStatsConfig
Compute numerical stats over an individual column, including min, max, and
quantiles.
Corresponds to the JSON property numericalStatsConfig
7401 7402 7403 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 7401 def numerical_stats_config @numerical_stats_config end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
7408 7409 7410 7411 7412 7413 7414 7415 |
# File 'lib/google/apis/dlp_v2/classes.rb', line 7408 def update!(**args) @categorical_stats_config = args[:categorical_stats_config] if args.key?(:categorical_stats_config) @delta_presence_estimation_config = args[:delta_presence_estimation_config] if args.key?(:delta_presence_estimation_config) @k_anonymity_config = args[:k_anonymity_config] if args.key?(:k_anonymity_config) @k_map_estimation_config = args[:k_map_estimation_config] if args.key?(:k_map_estimation_config) @l_diversity_config = args[:l_diversity_config] if args.key?(:l_diversity_config) @numerical_stats_config = args[:numerical_stats_config] if args.key?(:numerical_stats_config) end |