Class: Google::Apis::BigqueryV2::TrainingOptions

Inherits:
Object
  • Object
show all
Includes:
Core::Hashable, Core::JsonObjectSupport
Defined in:
lib/google/apis/bigquery_v2/classes.rb,
lib/google/apis/bigquery_v2/representations.rb,
lib/google/apis/bigquery_v2/representations.rb

Overview

Options used in model training.

Instance Attribute Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(**args) ⇒ TrainingOptions

Returns a new instance of TrainingOptions.



11102
11103
11104
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11102

def initialize(**args)
   update!(**args)
end

Instance Attribute Details

#activation_fnString

Activation function of the neural nets. Corresponds to the JSON property activationFn

Returns:

  • (String)


10613
10614
10615
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10613

def activation_fn
  @activation_fn
end

#adjust_step_changesBoolean Also known as: adjust_step_changes?

If true, detect step changes and make data adjustment in the input time series. Corresponds to the JSON property adjustStepChanges

Returns:

  • (Boolean)


10618
10619
10620
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10618

def adjust_step_changes
  @adjust_step_changes
end

#approx_global_feature_contribBoolean Also known as: approx_global_feature_contrib?

Whether to use approximate feature contribution method in XGBoost model explanation for global explain. Corresponds to the JSON property approxGlobalFeatureContrib

Returns:

  • (Boolean)


10625
10626
10627
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10625

def approx_global_feature_contrib
  @approx_global_feature_contrib
end

#auto_arimaBoolean Also known as: auto_arima?

Whether to enable auto ARIMA or not. Corresponds to the JSON property autoArima

Returns:

  • (Boolean)


10631
10632
10633
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10631

def auto_arima
  @auto_arima
end

#auto_arima_max_orderFixnum

The max value of the sum of non-seasonal p and q. Corresponds to the JSON property autoArimaMaxOrder

Returns:

  • (Fixnum)


10637
10638
10639
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10637

def auto_arima_max_order
  @auto_arima_max_order
end

#auto_arima_min_orderFixnum

The min value of the sum of non-seasonal p and q. Corresponds to the JSON property autoArimaMinOrder

Returns:

  • (Fixnum)


10642
10643
10644
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10642

def auto_arima_min_order
  @auto_arima_min_order
end

#auto_class_weightsBoolean Also known as: auto_class_weights?

Whether to calculate class weights automatically based on the popularity of each label. Corresponds to the JSON property autoClassWeights

Returns:

  • (Boolean)


10648
10649
10650
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10648

def auto_class_weights
  @auto_class_weights
end

#batch_sizeFixnum

Batch size for dnn models. Corresponds to the JSON property batchSize

Returns:

  • (Fixnum)


10654
10655
10656
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10654

def batch_size
  @batch_size
end

#booster_typeString

Booster type for boosted tree models. Corresponds to the JSON property boosterType

Returns:

  • (String)


10659
10660
10661
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10659

def booster_type
  @booster_type
end

#budget_hoursFloat

Budget in hours for AutoML training. Corresponds to the JSON property budgetHours

Returns:

  • (Float)


10664
10665
10666
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10664

def budget_hours
  @budget_hours
end

#calculate_p_valuesBoolean Also known as: calculate_p_values?

Whether or not p-value test should be computed for this model. Only available for linear and logistic regression models. Corresponds to the JSON property calculatePValues

Returns:

  • (Boolean)


10670
10671
10672
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10670

def calculate_p_values
  @calculate_p_values
end

#category_encoding_methodString

Categorical feature encoding method. Corresponds to the JSON property categoryEncodingMethod

Returns:

  • (String)


10676
10677
10678
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10676

def category_encoding_method
  @category_encoding_method
end

#clean_spikes_and_dipsBoolean Also known as: clean_spikes_and_dips?

If true, clean spikes and dips in the input time series. Corresponds to the JSON property cleanSpikesAndDips

Returns:

  • (Boolean)


10681
10682
10683
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10681

def clean_spikes_and_dips
  @clean_spikes_and_dips
end

#color_spaceString

Enums for color space, used for processing images in Object Table. See more details at https://www.tensorflow.org/io/tutorials/colorspace. Corresponds to the JSON property colorSpace

Returns:

  • (String)


10688
10689
10690
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10688

def color_space
  @color_space
end

#colsample_bylevelFloat

Subsample ratio of columns for each level for boosted tree models. Corresponds to the JSON property colsampleBylevel

Returns:

  • (Float)


10693
10694
10695
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10693

def colsample_bylevel
  @colsample_bylevel
end

#colsample_bynodeFloat

Subsample ratio of columns for each node(split) for boosted tree models. Corresponds to the JSON property colsampleBynode

Returns:

  • (Float)


10698
10699
10700
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10698

def colsample_bynode
  @colsample_bynode
end

#colsample_bytreeFloat

Subsample ratio of columns when constructing each tree for boosted tree models. Corresponds to the JSON property colsampleBytree

Returns:

  • (Float)


10703
10704
10705
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10703

def colsample_bytree
  @colsample_bytree
end

#dart_normalize_typeString

Type of normalization algorithm for boosted tree models using dart booster. Corresponds to the JSON property dartNormalizeType

Returns:

  • (String)


10708
10709
10710
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10708

def dart_normalize_type
  @dart_normalize_type
end

#data_frequencyString

The data frequency of a time series. Corresponds to the JSON property dataFrequency

Returns:

  • (String)


10713
10714
10715
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10713

def data_frequency
  @data_frequency
end

#data_split_columnString

The column to split data with. This column won't be used as a feature. 1. When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data. 2. When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are used as training data, and the rest are eval data. It respects the order in Orderable data types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data- type-properties Corresponds to the JSON property dataSplitColumn

Returns:

  • (String)


10725
10726
10727
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10725

def data_split_column
  @data_split_column
end

#data_split_eval_fractionFloat

The fraction of evaluation data over the whole input data. The rest of data will be used as training data. The format should be double. Accurate to two decimal places. Default value is 0.2. Corresponds to the JSON property dataSplitEvalFraction

Returns:

  • (Float)


10732
10733
10734
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10732

def data_split_eval_fraction
  @data_split_eval_fraction
end

#data_split_methodString

The data split type for training and evaluation, e.g. RANDOM. Corresponds to the JSON property dataSplitMethod

Returns:

  • (String)


10737
10738
10739
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10737

def data_split_method
  @data_split_method
end

#decompose_time_seriesBoolean Also known as: decompose_time_series?

If true, perform decompose time series and save the results. Corresponds to the JSON property decomposeTimeSeries

Returns:

  • (Boolean)


10742
10743
10744
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10742

def decompose_time_series
  @decompose_time_series
end

#distance_typeString

Distance type for clustering models. Corresponds to the JSON property distanceType

Returns:

  • (String)


10748
10749
10750
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10748

def distance_type
  @distance_type
end

#dropoutFloat

Dropout probability for dnn models. Corresponds to the JSON property dropout

Returns:

  • (Float)


10753
10754
10755
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10753

def dropout
  @dropout
end

#early_stopBoolean Also known as: early_stop?

Whether to stop early when the loss doesn't improve significantly any more ( compared to min_relative_progress). Used only for iterative training algorithms. Corresponds to the JSON property earlyStop

Returns:

  • (Boolean)


10760
10761
10762
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10760

def early_stop
  @early_stop
end

#enable_global_explainBoolean Also known as: enable_global_explain?

If true, enable global explanation during training. Corresponds to the JSON property enableGlobalExplain

Returns:

  • (Boolean)


10766
10767
10768
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10766

def enable_global_explain
  @enable_global_explain
end

#feedback_typeString

Feedback type that specifies which algorithm to run for matrix factorization. Corresponds to the JSON property feedbackType

Returns:

  • (String)


10772
10773
10774
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10772

def feedback_type
  @feedback_type
end

#fit_interceptBoolean Also known as: fit_intercept?

Whether the model should include intercept during model training. Corresponds to the JSON property fitIntercept

Returns:

  • (Boolean)


10777
10778
10779
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10777

def fit_intercept
  @fit_intercept
end

#hidden_unitsArray<Fixnum>

Hidden units for dnn models. Corresponds to the JSON property hiddenUnits

Returns:

  • (Array<Fixnum>)


10783
10784
10785
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10783

def hidden_units
  @hidden_units
end

#holiday_regionString

The geographical region based on which the holidays are considered in time series modeling. If a valid value is specified, then holiday effects modeling is enabled. Corresponds to the JSON property holidayRegion

Returns:

  • (String)


10790
10791
10792
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10790

def holiday_region
  @holiday_region
end

#holiday_regionsArray<String>

A list of geographical regions that are used for time series modeling. Corresponds to the JSON property holidayRegions

Returns:

  • (Array<String>)


10795
10796
10797
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10795

def holiday_regions
  @holiday_regions
end

#horizonFixnum

The number of periods ahead that need to be forecasted. Corresponds to the JSON property horizon

Returns:

  • (Fixnum)


10800
10801
10802
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10800

def horizon
  @horizon
end

#hparam_tuning_objectivesArray<String>

The target evaluation metrics to optimize the hyperparameters for. Corresponds to the JSON property hparamTuningObjectives

Returns:

  • (Array<String>)


10805
10806
10807
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10805

def hparam_tuning_objectives
  @hparam_tuning_objectives
end

#include_driftBoolean Also known as: include_drift?

Include drift when fitting an ARIMA model. Corresponds to the JSON property includeDrift

Returns:

  • (Boolean)


10810
10811
10812
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10810

def include_drift
  @include_drift
end

#initial_learn_rateFloat

Specifies the initial learning rate for the line search learn rate strategy. Corresponds to the JSON property initialLearnRate

Returns:

  • (Float)


10816
10817
10818
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10816

def initial_learn_rate
  @initial_learn_rate
end

#input_label_columnsArray<String>

Name of input label columns in training data. Corresponds to the JSON property inputLabelColumns

Returns:

  • (Array<String>)


10821
10822
10823
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10821

def input_label_columns
  @input_label_columns
end

#instance_weight_columnString

Name of the instance weight column for training data. This column isn't be used as a feature. Corresponds to the JSON property instanceWeightColumn

Returns:

  • (String)


10827
10828
10829
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10827

def instance_weight_column
  @instance_weight_column
end

#integrated_gradients_num_stepsFixnum

Number of integral steps for the integrated gradients explain method. Corresponds to the JSON property integratedGradientsNumSteps

Returns:

  • (Fixnum)


10832
10833
10834
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10832

def integrated_gradients_num_steps
  @integrated_gradients_num_steps
end

#item_columnString

Item column specified for matrix factorization models. Corresponds to the JSON property itemColumn

Returns:

  • (String)


10837
10838
10839
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10837

def item_column
  @item_column
end

#kmeans_initialization_columnString

The column used to provide the initial centroids for kmeans algorithm when kmeans_initialization_method is CUSTOM. Corresponds to the JSON property kmeansInitializationColumn

Returns:

  • (String)


10843
10844
10845
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10843

def kmeans_initialization_column
  @kmeans_initialization_column
end

#kmeans_initialization_methodString

The method used to initialize the centroids for kmeans algorithm. Corresponds to the JSON property kmeansInitializationMethod

Returns:

  • (String)


10848
10849
10850
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10848

def kmeans_initialization_method
  @kmeans_initialization_method
end

#l1_reg_activationFloat

L1 regularization coefficient to activations. Corresponds to the JSON property l1RegActivation

Returns:

  • (Float)


10853
10854
10855
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10853

def l1_reg_activation
  @l1_reg_activation
end

#l1_regularizationFloat

L1 regularization coefficient. Corresponds to the JSON property l1Regularization

Returns:

  • (Float)


10858
10859
10860
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10858

def l1_regularization
  @l1_regularization
end

#l2_regularizationFloat

L2 regularization coefficient. Corresponds to the JSON property l2Regularization

Returns:

  • (Float)


10863
10864
10865
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10863

def l2_regularization
  @l2_regularization
end

#label_class_weightsHash<String,Float>

Weights associated with each label class, for rebalancing the training data. Only applicable for classification models. Corresponds to the JSON property labelClassWeights

Returns:

  • (Hash<String,Float>)


10869
10870
10871
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10869

def label_class_weights
  @label_class_weights
end

#learn_rateFloat

Learning rate in training. Used only for iterative training algorithms. Corresponds to the JSON property learnRate

Returns:

  • (Float)


10874
10875
10876
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10874

def learn_rate
  @learn_rate
end

#learn_rate_strategyString

The strategy to determine learn rate for the current iteration. Corresponds to the JSON property learnRateStrategy

Returns:

  • (String)


10879
10880
10881
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10879

def learn_rate_strategy
  @learn_rate_strategy
end

#loss_typeString

Type of loss function used during training run. Corresponds to the JSON property lossType

Returns:

  • (String)


10884
10885
10886
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10884

def loss_type
  @loss_type
end

#max_iterationsFixnum

The maximum number of iterations in training. Used only for iterative training algorithms. Corresponds to the JSON property maxIterations

Returns:

  • (Fixnum)


10890
10891
10892
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10890

def max_iterations
  @max_iterations
end

#max_parallel_trialsFixnum

Maximum number of trials to run in parallel. Corresponds to the JSON property maxParallelTrials

Returns:

  • (Fixnum)


10895
10896
10897
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10895

def max_parallel_trials
  @max_parallel_trials
end

#max_time_series_lengthFixnum

The maximum number of time points in a time series that can be used in modeling the trend component of the time series. Don't use this option with the timeSeriesLengthFraction or minTimeSeriesLength options. Corresponds to the JSON property maxTimeSeriesLength

Returns:

  • (Fixnum)


10902
10903
10904
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10902

def max_time_series_length
  @max_time_series_length
end

#max_tree_depthFixnum

Maximum depth of a tree for boosted tree models. Corresponds to the JSON property maxTreeDepth

Returns:

  • (Fixnum)


10907
10908
10909
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10907

def max_tree_depth
  @max_tree_depth
end

#min_relative_progressFloat

When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'. Used only for iterative training algorithms. Corresponds to the JSON property minRelativeProgress

Returns:

  • (Float)


10913
10914
10915
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10913

def min_relative_progress
  @min_relative_progress
end

#min_split_lossFloat

Minimum split loss for boosted tree models. Corresponds to the JSON property minSplitLoss

Returns:

  • (Float)


10918
10919
10920
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10918

def min_split_loss
  @min_split_loss
end

#min_time_series_lengthFixnum

The minimum number of time points in a time series that are used in modeling the trend component of the time series. If you use this option you must also set the timeSeriesLengthFraction option. This training option ensures that enough time points are available when you use timeSeriesLengthFraction in trend modeling. This is particularly important when forecasting multiple time series in a single query using timeSeriesIdColumn. If the total number of time points is less than the minTimeSeriesLength value, then the query uses all available time points. Corresponds to the JSON property minTimeSeriesLength

Returns:

  • (Fixnum)


10930
10931
10932
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10930

def min_time_series_length
  @min_time_series_length
end

#min_tree_child_weightFixnum

Minimum sum of instance weight needed in a child for boosted tree models. Corresponds to the JSON property minTreeChildWeight

Returns:

  • (Fixnum)


10935
10936
10937
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10935

def min_tree_child_weight
  @min_tree_child_weight
end

#model_registryString

The model registry. Corresponds to the JSON property modelRegistry

Returns:

  • (String)


10940
10941
10942
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10940

def model_registry
  @model_registry
end

#model_uriString

Google Cloud Storage URI from which the model was imported. Only applicable for imported models. Corresponds to the JSON property modelUri

Returns:

  • (String)


10946
10947
10948
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10946

def model_uri
  @model_uri
end

#non_seasonal_orderGoogle::Apis::BigqueryV2::ArimaOrder

Arima order, can be used for both non-seasonal and seasonal parts. Corresponds to the JSON property nonSeasonalOrder



10951
10952
10953
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10951

def non_seasonal_order
  @non_seasonal_order
end

#num_clustersFixnum

Number of clusters for clustering models. Corresponds to the JSON property numClusters

Returns:

  • (Fixnum)


10956
10957
10958
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10956

def num_clusters
  @num_clusters
end

#num_factorsFixnum

Num factors specified for matrix factorization models. Corresponds to the JSON property numFactors

Returns:

  • (Fixnum)


10961
10962
10963
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10961

def num_factors
  @num_factors
end

#num_parallel_treeFixnum

Number of parallel trees constructed during each iteration for boosted tree models. Corresponds to the JSON property numParallelTree

Returns:

  • (Fixnum)


10967
10968
10969
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10967

def num_parallel_tree
  @num_parallel_tree
end

#num_principal_componentsFixnum

Number of principal components to keep in the PCA model. Must be <= the number of features. Corresponds to the JSON property numPrincipalComponents

Returns:

  • (Fixnum)


10973
10974
10975
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10973

def num_principal_components
  @num_principal_components
end

#num_trialsFixnum

Number of trials to run this hyperparameter tuning job. Corresponds to the JSON property numTrials

Returns:

  • (Fixnum)


10978
10979
10980
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10978

def num_trials
  @num_trials
end

#optimization_strategyString

Optimization strategy for training linear regression models. Corresponds to the JSON property optimizationStrategy

Returns:

  • (String)


10983
10984
10985
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10983

def optimization_strategy
  @optimization_strategy
end

#optimizerString

Optimizer used for training the neural nets. Corresponds to the JSON property optimizer

Returns:

  • (String)


10988
10989
10990
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10988

def optimizer
  @optimizer
end

#pca_explained_variance_ratioFloat

The minimum ratio of cumulative explained variance that needs to be given by the PCA model. Corresponds to the JSON property pcaExplainedVarianceRatio

Returns:

  • (Float)


10994
10995
10996
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10994

def pca_explained_variance_ratio
  @pca_explained_variance_ratio
end

#pca_solverString

The solver for PCA. Corresponds to the JSON property pcaSolver

Returns:

  • (String)


10999
11000
11001
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10999

def pca_solver
  @pca_solver
end

#sampled_shapley_num_pathsFixnum

Number of paths for the sampled Shapley explain method. Corresponds to the JSON property sampledShapleyNumPaths

Returns:

  • (Fixnum)


11004
11005
11006
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11004

def sampled_shapley_num_paths
  @sampled_shapley_num_paths
end

#scale_featuresBoolean Also known as: scale_features?

If true, scale the feature values by dividing the feature standard deviation. Currently only apply to PCA. Corresponds to the JSON property scaleFeatures

Returns:

  • (Boolean)


11010
11011
11012
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11010

def scale_features
  @scale_features
end

#standardize_featuresBoolean Also known as: standardize_features?

Whether to standardize numerical features. Default to true. Corresponds to the JSON property standardizeFeatures

Returns:

  • (Boolean)


11016
11017
11018
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11016

def standardize_features
  @standardize_features
end

#subsampleFloat

Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree models. Corresponds to the JSON property subsample

Returns:

  • (Float)


11023
11024
11025
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11023

def subsample
  @subsample
end

#tf_versionString

Based on the selected TF version, the corresponding docker image is used to train external models. Corresponds to the JSON property tfVersion

Returns:

  • (String)


11029
11030
11031
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11029

def tf_version
  @tf_version
end

#time_series_data_columnString

Column to be designated as time series data for ARIMA model. Corresponds to the JSON property timeSeriesDataColumn

Returns:

  • (String)


11034
11035
11036
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11034

def time_series_data_column
  @time_series_data_column
end

#time_series_id_columnString

The time series id column that was used during ARIMA model training. Corresponds to the JSON property timeSeriesIdColumn

Returns:

  • (String)


11039
11040
11041
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11039

def time_series_id_column
  @time_series_id_column
end

#time_series_id_columnsArray<String>

The time series id columns that were used during ARIMA model training. Corresponds to the JSON property timeSeriesIdColumns

Returns:

  • (Array<String>)


11044
11045
11046
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11044

def time_series_id_columns
  @time_series_id_columns
end

#time_series_length_fractionFloat

The fraction of the interpolated length of the time series that's used to model the time series trend component. All of the time points of the time series are used to model the non-trend component. This training option accelerates modeling training without sacrificing much forecasting accuracy. You can use this option with minTimeSeriesLength but not with maxTimeSeriesLength. Corresponds to the JSON property timeSeriesLengthFraction

Returns:

  • (Float)


11054
11055
11056
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11054

def time_series_length_fraction
  @time_series_length_fraction
end

#time_series_timestamp_columnString

Column to be designated as time series timestamp for ARIMA model. Corresponds to the JSON property timeSeriesTimestampColumn

Returns:

  • (String)


11059
11060
11061
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11059

def time_series_timestamp_column
  @time_series_timestamp_column
end

#tree_methodString

Tree construction algorithm for boosted tree models. Corresponds to the JSON property treeMethod

Returns:

  • (String)


11064
11065
11066
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11064

def tree_method
  @tree_method
end

#trend_smoothing_window_sizeFixnum

Smoothing window size for the trend component. When a positive value is specified, a center moving average smoothing is applied on the history trend. When the smoothing window is out of the boundary at the beginning or the end of the trend, the first element or the last element is padded to fill the smoothing window before the average is applied. Corresponds to the JSON property trendSmoothingWindowSize

Returns:

  • (Fixnum)


11073
11074
11075
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11073

def trend_smoothing_window_size
  @trend_smoothing_window_size
end

#user_columnString

User column specified for matrix factorization models. Corresponds to the JSON property userColumn

Returns:

  • (String)


11078
11079
11080
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11078

def user_column
  @user_column
end

#vertex_ai_model_version_aliasesArray<String>

The version aliases to apply in Vertex AI model registry. Always overwrite if the version aliases exists in a existing model. Corresponds to the JSON property vertexAiModelVersionAliases

Returns:

  • (Array<String>)


11084
11085
11086
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11084

def vertex_ai_model_version_aliases
  @vertex_ai_model_version_aliases
end

#wals_alphaFloat

Hyperparameter for matrix factoration when implicit feedback type is specified. Corresponds to the JSON property walsAlpha

Returns:

  • (Float)


11089
11090
11091
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11089

def wals_alpha
  @wals_alpha
end

#warm_startBoolean Also known as: warm_start?

Whether to train a model from the last checkpoint. Corresponds to the JSON property warmStart

Returns:

  • (Boolean)


11094
11095
11096
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11094

def warm_start
  @warm_start
end

#xgboost_versionString

User-selected XGBoost versions for training of XGBoost models. Corresponds to the JSON property xgboostVersion

Returns:

  • (String)


11100
11101
11102
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11100

def xgboost_version
  @xgboost_version
end

Instance Method Details

#update!(**args) ⇒ Object

Update properties of this object



11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11107

def update!(**args)
  @activation_fn = args[:activation_fn] if args.key?(:activation_fn)
  @adjust_step_changes = args[:adjust_step_changes] if args.key?(:adjust_step_changes)
  @approx_global_feature_contrib = args[:approx_global_feature_contrib] if args.key?(:approx_global_feature_contrib)
  @auto_arima = args[:auto_arima] if args.key?(:auto_arima)
  @auto_arima_max_order = args[:auto_arima_max_order] if args.key?(:auto_arima_max_order)
  @auto_arima_min_order = args[:auto_arima_min_order] if args.key?(:auto_arima_min_order)
  @auto_class_weights = args[:auto_class_weights] if args.key?(:auto_class_weights)
  @batch_size = args[:batch_size] if args.key?(:batch_size)
  @booster_type = args[:booster_type] if args.key?(:booster_type)
  @budget_hours = args[:budget_hours] if args.key?(:budget_hours)
  @calculate_p_values = args[:calculate_p_values] if args.key?(:calculate_p_values)
  @category_encoding_method = args[:category_encoding_method] if args.key?(:category_encoding_method)
  @clean_spikes_and_dips = args[:clean_spikes_and_dips] if args.key?(:clean_spikes_and_dips)
  @color_space = args[:color_space] if args.key?(:color_space)
  @colsample_bylevel = args[:colsample_bylevel] if args.key?(:colsample_bylevel)
  @colsample_bynode = args[:colsample_bynode] if args.key?(:colsample_bynode)
  @colsample_bytree = args[:colsample_bytree] if args.key?(:colsample_bytree)
  @dart_normalize_type = args[:dart_normalize_type] if args.key?(:dart_normalize_type)
  @data_frequency = args[:data_frequency] if args.key?(:data_frequency)
  @data_split_column = args[:data_split_column] if args.key?(:data_split_column)
  @data_split_eval_fraction = args[:data_split_eval_fraction] if args.key?(:data_split_eval_fraction)
  @data_split_method = args[:data_split_method] if args.key?(:data_split_method)
  @decompose_time_series = args[:decompose_time_series] if args.key?(:decompose_time_series)
  @distance_type = args[:distance_type] if args.key?(:distance_type)
  @dropout = args[:dropout] if args.key?(:dropout)
  @early_stop = args[:early_stop] if args.key?(:early_stop)
  @enable_global_explain = args[:enable_global_explain] if args.key?(:enable_global_explain)
  @feedback_type = args[:feedback_type] if args.key?(:feedback_type)
  @fit_intercept = args[:fit_intercept] if args.key?(:fit_intercept)
  @hidden_units = args[:hidden_units] if args.key?(:hidden_units)
  @holiday_region = args[:holiday_region] if args.key?(:holiday_region)
  @holiday_regions = args[:holiday_regions] if args.key?(:holiday_regions)
  @horizon = args[:horizon] if args.key?(:horizon)
  @hparam_tuning_objectives = args[:hparam_tuning_objectives] if args.key?(:hparam_tuning_objectives)
  @include_drift = args[:include_drift] if args.key?(:include_drift)
  @initial_learn_rate = args[:initial_learn_rate] if args.key?(:initial_learn_rate)
  @input_label_columns = args[:input_label_columns] if args.key?(:input_label_columns)
  @instance_weight_column = args[:instance_weight_column] if args.key?(:instance_weight_column)
  @integrated_gradients_num_steps = args[:integrated_gradients_num_steps] if args.key?(:integrated_gradients_num_steps)
  @item_column = args[:item_column] if args.key?(:item_column)
  @kmeans_initialization_column = args[:kmeans_initialization_column] if args.key?(:kmeans_initialization_column)
  @kmeans_initialization_method = args[:kmeans_initialization_method] if args.key?(:kmeans_initialization_method)
  @l1_reg_activation = args[:l1_reg_activation] if args.key?(:l1_reg_activation)
  @l1_regularization = args[:l1_regularization] if args.key?(:l1_regularization)
  @l2_regularization = args[:l2_regularization] if args.key?(:l2_regularization)
  @label_class_weights = args[:label_class_weights] if args.key?(:label_class_weights)
  @learn_rate = args[:learn_rate] if args.key?(:learn_rate)
  @learn_rate_strategy = args[:learn_rate_strategy] if args.key?(:learn_rate_strategy)
  @loss_type = args[:loss_type] if args.key?(:loss_type)
  @max_iterations = args[:max_iterations] if args.key?(:max_iterations)
  @max_parallel_trials = args[:max_parallel_trials] if args.key?(:max_parallel_trials)
  @max_time_series_length = args[:max_time_series_length] if args.key?(:max_time_series_length)
  @max_tree_depth = args[:max_tree_depth] if args.key?(:max_tree_depth)
  @min_relative_progress = args[:min_relative_progress] if args.key?(:min_relative_progress)
  @min_split_loss = args[:min_split_loss] if args.key?(:min_split_loss)
  @min_time_series_length = args[:min_time_series_length] if args.key?(:min_time_series_length)
  @min_tree_child_weight = args[:min_tree_child_weight] if args.key?(:min_tree_child_weight)
  @model_registry = args[:model_registry] if args.key?(:model_registry)
  @model_uri = args[:model_uri] if args.key?(:model_uri)
  @non_seasonal_order = args[:non_seasonal_order] if args.key?(:non_seasonal_order)
  @num_clusters = args[:num_clusters] if args.key?(:num_clusters)
  @num_factors = args[:num_factors] if args.key?(:num_factors)
  @num_parallel_tree = args[:num_parallel_tree] if args.key?(:num_parallel_tree)
  @num_principal_components = args[:num_principal_components] if args.key?(:num_principal_components)
  @num_trials = args[:num_trials] if args.key?(:num_trials)
  @optimization_strategy = args[:optimization_strategy] if args.key?(:optimization_strategy)
  @optimizer = args[:optimizer] if args.key?(:optimizer)
  @pca_explained_variance_ratio = args[:pca_explained_variance_ratio] if args.key?(:pca_explained_variance_ratio)
  @pca_solver = args[:pca_solver] if args.key?(:pca_solver)
  @sampled_shapley_num_paths = args[:sampled_shapley_num_paths] if args.key?(:sampled_shapley_num_paths)
  @scale_features = args[:scale_features] if args.key?(:scale_features)
  @standardize_features = args[:standardize_features] if args.key?(:standardize_features)
  @subsample = args[:subsample] if args.key?(:subsample)
  @tf_version = args[:tf_version] if args.key?(:tf_version)
  @time_series_data_column = args[:time_series_data_column] if args.key?(:time_series_data_column)
  @time_series_id_column = args[:time_series_id_column] if args.key?(:time_series_id_column)
  @time_series_id_columns = args[:time_series_id_columns] if args.key?(:time_series_id_columns)
  @time_series_length_fraction = args[:time_series_length_fraction] if args.key?(:time_series_length_fraction)
  @time_series_timestamp_column = args[:time_series_timestamp_column] if args.key?(:time_series_timestamp_column)
  @tree_method = args[:tree_method] if args.key?(:tree_method)
  @trend_smoothing_window_size = args[:trend_smoothing_window_size] if args.key?(:trend_smoothing_window_size)
  @user_column = args[:user_column] if args.key?(:user_column)
  @vertex_ai_model_version_aliases = args[:vertex_ai_model_version_aliases] if args.key?(:vertex_ai_model_version_aliases)
  @wals_alpha = args[:wals_alpha] if args.key?(:wals_alpha)
  @warm_start = args[:warm_start] if args.key?(:warm_start)
  @xgboost_version = args[:xgboost_version] if args.key?(:xgboost_version)
end