Class: Google::Apis::BigqueryV2::TrainingOptions
- Inherits:
-
Object
- Object
- Google::Apis::BigqueryV2::TrainingOptions
- Includes:
- Core::Hashable, Core::JsonObjectSupport
- Defined in:
- lib/google/apis/bigquery_v2/classes.rb,
lib/google/apis/bigquery_v2/representations.rb,
lib/google/apis/bigquery_v2/representations.rb
Overview
Options used in model training.
Instance Attribute Summary collapse
-
#activation_fn ⇒ String
Activation function of the neural nets.
-
#adjust_step_changes ⇒ Boolean
(also: #adjust_step_changes?)
If true, detect step changes and make data adjustment in the input time series.
-
#approx_global_feature_contrib ⇒ Boolean
(also: #approx_global_feature_contrib?)
Whether to use approximate feature contribution method in XGBoost model explanation for global explain.
-
#auto_arima ⇒ Boolean
(also: #auto_arima?)
Whether to enable auto ARIMA or not.
-
#auto_arima_max_order ⇒ Fixnum
The max value of the sum of non-seasonal p and q.
-
#auto_arima_min_order ⇒ Fixnum
The min value of the sum of non-seasonal p and q.
-
#auto_class_weights ⇒ Boolean
(also: #auto_class_weights?)
Whether to calculate class weights automatically based on the popularity of each label.
-
#batch_size ⇒ Fixnum
Batch size for dnn models.
-
#booster_type ⇒ String
Booster type for boosted tree models.
-
#budget_hours ⇒ Float
Budget in hours for AutoML training.
-
#calculate_p_values ⇒ Boolean
(also: #calculate_p_values?)
Whether or not p-value test should be computed for this model.
-
#category_encoding_method ⇒ String
Categorical feature encoding method.
-
#clean_spikes_and_dips ⇒ Boolean
(also: #clean_spikes_and_dips?)
If true, clean spikes and dips in the input time series.
-
#color_space ⇒ String
Enums for color space, used for processing images in Object Table.
-
#colsample_bylevel ⇒ Float
Subsample ratio of columns for each level for boosted tree models.
-
#colsample_bynode ⇒ Float
Subsample ratio of columns for each node(split) for boosted tree models.
-
#colsample_bytree ⇒ Float
Subsample ratio of columns when constructing each tree for boosted tree models.
-
#dart_normalize_type ⇒ String
Type of normalization algorithm for boosted tree models using dart booster.
-
#data_frequency ⇒ String
The data frequency of a time series.
-
#data_split_column ⇒ String
The column to split data with.
-
#data_split_eval_fraction ⇒ Float
The fraction of evaluation data over the whole input data.
-
#data_split_method ⇒ String
The data split type for training and evaluation, e.g.
-
#decompose_time_series ⇒ Boolean
(also: #decompose_time_series?)
If true, perform decompose time series and save the results.
-
#distance_type ⇒ String
Distance type for clustering models.
-
#dropout ⇒ Float
Dropout probability for dnn models.
-
#early_stop ⇒ Boolean
(also: #early_stop?)
Whether to stop early when the loss doesn't improve significantly any more ( compared to min_relative_progress).
-
#enable_global_explain ⇒ Boolean
(also: #enable_global_explain?)
If true, enable global explanation during training.
-
#feedback_type ⇒ String
Feedback type that specifies which algorithm to run for matrix factorization.
-
#fit_intercept ⇒ Boolean
(also: #fit_intercept?)
Whether the model should include intercept during model training.
-
#hidden_units ⇒ Array<Fixnum>
Hidden units for dnn models.
-
#holiday_region ⇒ String
The geographical region based on which the holidays are considered in time series modeling.
-
#holiday_regions ⇒ Array<String>
A list of geographical regions that are used for time series modeling.
-
#horizon ⇒ Fixnum
The number of periods ahead that need to be forecasted.
-
#hparam_tuning_objectives ⇒ Array<String>
The target evaluation metrics to optimize the hyperparameters for.
-
#include_drift ⇒ Boolean
(also: #include_drift?)
Include drift when fitting an ARIMA model.
-
#initial_learn_rate ⇒ Float
Specifies the initial learning rate for the line search learn rate strategy.
-
#input_label_columns ⇒ Array<String>
Name of input label columns in training data.
-
#instance_weight_column ⇒ String
Name of the instance weight column for training data.
-
#integrated_gradients_num_steps ⇒ Fixnum
Number of integral steps for the integrated gradients explain method.
-
#item_column ⇒ String
Item column specified for matrix factorization models.
-
#kmeans_initialization_column ⇒ String
The column used to provide the initial centroids for kmeans algorithm when kmeans_initialization_method is CUSTOM.
-
#kmeans_initialization_method ⇒ String
The method used to initialize the centroids for kmeans algorithm.
-
#l1_reg_activation ⇒ Float
L1 regularization coefficient to activations.
-
#l1_regularization ⇒ Float
L1 regularization coefficient.
-
#l2_regularization ⇒ Float
L2 regularization coefficient.
-
#label_class_weights ⇒ Hash<String,Float>
Weights associated with each label class, for rebalancing the training data.
-
#learn_rate ⇒ Float
Learning rate in training.
-
#learn_rate_strategy ⇒ String
The strategy to determine learn rate for the current iteration.
-
#loss_type ⇒ String
Type of loss function used during training run.
-
#max_iterations ⇒ Fixnum
The maximum number of iterations in training.
-
#max_parallel_trials ⇒ Fixnum
Maximum number of trials to run in parallel.
-
#max_time_series_length ⇒ Fixnum
The maximum number of time points in a time series that can be used in modeling the trend component of the time series.
-
#max_tree_depth ⇒ Fixnum
Maximum depth of a tree for boosted tree models.
-
#min_relative_progress ⇒ Float
When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'.
-
#min_split_loss ⇒ Float
Minimum split loss for boosted tree models.
-
#min_time_series_length ⇒ Fixnum
The minimum number of time points in a time series that are used in modeling the trend component of the time series.
-
#min_tree_child_weight ⇒ Fixnum
Minimum sum of instance weight needed in a child for boosted tree models.
-
#model_registry ⇒ String
The model registry.
-
#model_uri ⇒ String
Google Cloud Storage URI from which the model was imported.
-
#non_seasonal_order ⇒ Google::Apis::BigqueryV2::ArimaOrder
Arima order, can be used for both non-seasonal and seasonal parts.
-
#num_clusters ⇒ Fixnum
Number of clusters for clustering models.
-
#num_factors ⇒ Fixnum
Num factors specified for matrix factorization models.
-
#num_parallel_tree ⇒ Fixnum
Number of parallel trees constructed during each iteration for boosted tree models.
-
#num_principal_components ⇒ Fixnum
Number of principal components to keep in the PCA model.
-
#num_trials ⇒ Fixnum
Number of trials to run this hyperparameter tuning job.
-
#optimization_strategy ⇒ String
Optimization strategy for training linear regression models.
-
#optimizer ⇒ String
Optimizer used for training the neural nets.
-
#pca_explained_variance_ratio ⇒ Float
The minimum ratio of cumulative explained variance that needs to be given by the PCA model.
-
#pca_solver ⇒ String
The solver for PCA.
-
#sampled_shapley_num_paths ⇒ Fixnum
Number of paths for the sampled Shapley explain method.
-
#scale_features ⇒ Boolean
(also: #scale_features?)
If true, scale the feature values by dividing the feature standard deviation.
-
#standardize_features ⇒ Boolean
(also: #standardize_features?)
Whether to standardize numerical features.
-
#subsample ⇒ Float
Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree models.
-
#tf_version ⇒ String
Based on the selected TF version, the corresponding docker image is used to train external models.
-
#time_series_data_column ⇒ String
Column to be designated as time series data for ARIMA model.
-
#time_series_id_column ⇒ String
The time series id column that was used during ARIMA model training.
-
#time_series_id_columns ⇒ Array<String>
The time series id columns that were used during ARIMA model training.
-
#time_series_length_fraction ⇒ Float
The fraction of the interpolated length of the time series that's used to model the time series trend component.
-
#time_series_timestamp_column ⇒ String
Column to be designated as time series timestamp for ARIMA model.
-
#tree_method ⇒ String
Tree construction algorithm for boosted tree models.
-
#trend_smoothing_window_size ⇒ Fixnum
Smoothing window size for the trend component.
-
#user_column ⇒ String
User column specified for matrix factorization models.
-
#vertex_ai_model_version_aliases ⇒ Array<String>
The version aliases to apply in Vertex AI model registry.
-
#wals_alpha ⇒ Float
Hyperparameter for matrix factoration when implicit feedback type is specified.
-
#warm_start ⇒ Boolean
(also: #warm_start?)
Whether to train a model from the last checkpoint.
-
#xgboost_version ⇒ String
User-selected XGBoost versions for training of XGBoost models.
Instance Method Summary collapse
-
#initialize(**args) ⇒ TrainingOptions
constructor
A new instance of TrainingOptions.
-
#update!(**args) ⇒ Object
Update properties of this object.
Constructor Details
#initialize(**args) ⇒ TrainingOptions
Returns a new instance of TrainingOptions.
11102 11103 11104 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11102 def initialize(**args) update!(**args) end |
Instance Attribute Details
#activation_fn ⇒ String
Activation function of the neural nets.
Corresponds to the JSON property activationFn
10613 10614 10615 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10613 def activation_fn @activation_fn end |
#adjust_step_changes ⇒ Boolean Also known as: adjust_step_changes?
If true, detect step changes and make data adjustment in the input time series.
Corresponds to the JSON property adjustStepChanges
10618 10619 10620 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10618 def adjust_step_changes @adjust_step_changes end |
#approx_global_feature_contrib ⇒ Boolean Also known as: approx_global_feature_contrib?
Whether to use approximate feature contribution method in XGBoost model
explanation for global explain.
Corresponds to the JSON property approxGlobalFeatureContrib
10625 10626 10627 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10625 def approx_global_feature_contrib @approx_global_feature_contrib end |
#auto_arima ⇒ Boolean Also known as: auto_arima?
Whether to enable auto ARIMA or not.
Corresponds to the JSON property autoArima
10631 10632 10633 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10631 def auto_arima @auto_arima end |
#auto_arima_max_order ⇒ Fixnum
The max value of the sum of non-seasonal p and q.
Corresponds to the JSON property autoArimaMaxOrder
10637 10638 10639 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10637 def auto_arima_max_order @auto_arima_max_order end |
#auto_arima_min_order ⇒ Fixnum
The min value of the sum of non-seasonal p and q.
Corresponds to the JSON property autoArimaMinOrder
10642 10643 10644 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10642 def auto_arima_min_order @auto_arima_min_order end |
#auto_class_weights ⇒ Boolean Also known as: auto_class_weights?
Whether to calculate class weights automatically based on the popularity of
each label.
Corresponds to the JSON property autoClassWeights
10648 10649 10650 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10648 def auto_class_weights @auto_class_weights end |
#batch_size ⇒ Fixnum
Batch size for dnn models.
Corresponds to the JSON property batchSize
10654 10655 10656 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10654 def batch_size @batch_size end |
#booster_type ⇒ String
Booster type for boosted tree models.
Corresponds to the JSON property boosterType
10659 10660 10661 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10659 def booster_type @booster_type end |
#budget_hours ⇒ Float
Budget in hours for AutoML training.
Corresponds to the JSON property budgetHours
10664 10665 10666 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10664 def budget_hours @budget_hours end |
#calculate_p_values ⇒ Boolean Also known as: calculate_p_values?
Whether or not p-value test should be computed for this model. Only available
for linear and logistic regression models.
Corresponds to the JSON property calculatePValues
10670 10671 10672 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10670 def calculate_p_values @calculate_p_values end |
#category_encoding_method ⇒ String
Categorical feature encoding method.
Corresponds to the JSON property categoryEncodingMethod
10676 10677 10678 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10676 def category_encoding_method @category_encoding_method end |
#clean_spikes_and_dips ⇒ Boolean Also known as: clean_spikes_and_dips?
If true, clean spikes and dips in the input time series.
Corresponds to the JSON property cleanSpikesAndDips
10681 10682 10683 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10681 def clean_spikes_and_dips @clean_spikes_and_dips end |
#color_space ⇒ String
Enums for color space, used for processing images in Object Table. See more
details at https://www.tensorflow.org/io/tutorials/colorspace.
Corresponds to the JSON property colorSpace
10688 10689 10690 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10688 def color_space @color_space end |
#colsample_bylevel ⇒ Float
Subsample ratio of columns for each level for boosted tree models.
Corresponds to the JSON property colsampleBylevel
10693 10694 10695 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10693 def colsample_bylevel @colsample_bylevel end |
#colsample_bynode ⇒ Float
Subsample ratio of columns for each node(split) for boosted tree models.
Corresponds to the JSON property colsampleBynode
10698 10699 10700 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10698 def colsample_bynode @colsample_bynode end |
#colsample_bytree ⇒ Float
Subsample ratio of columns when constructing each tree for boosted tree models.
Corresponds to the JSON property colsampleBytree
10703 10704 10705 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10703 def colsample_bytree @colsample_bytree end |
#dart_normalize_type ⇒ String
Type of normalization algorithm for boosted tree models using dart booster.
Corresponds to the JSON property dartNormalizeType
10708 10709 10710 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10708 def dart_normalize_type @dart_normalize_type end |
#data_frequency ⇒ String
The data frequency of a time series.
Corresponds to the JSON property dataFrequency
10713 10714 10715 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10713 def data_frequency @data_frequency end |
#data_split_column ⇒ String
The column to split data with. This column won't be used as a feature. 1. When
data_split_method is CUSTOM, the corresponding column should be boolean. The
rows with true value tag are eval data, and the false are training data. 2.
When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from
smallest to largest) in the corresponding column are used as training data,
and the rest are eval data. It respects the order in Orderable data types:
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-
type-properties
Corresponds to the JSON property dataSplitColumn
10725 10726 10727 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10725 def data_split_column @data_split_column end |
#data_split_eval_fraction ⇒ Float
The fraction of evaluation data over the whole input data. The rest of data
will be used as training data. The format should be double. Accurate to two
decimal places. Default value is 0.2.
Corresponds to the JSON property dataSplitEvalFraction
10732 10733 10734 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10732 def data_split_eval_fraction @data_split_eval_fraction end |
#data_split_method ⇒ String
The data split type for training and evaluation, e.g. RANDOM.
Corresponds to the JSON property dataSplitMethod
10737 10738 10739 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10737 def data_split_method @data_split_method end |
#decompose_time_series ⇒ Boolean Also known as: decompose_time_series?
If true, perform decompose time series and save the results.
Corresponds to the JSON property decomposeTimeSeries
10742 10743 10744 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10742 def decompose_time_series @decompose_time_series end |
#distance_type ⇒ String
Distance type for clustering models.
Corresponds to the JSON property distanceType
10748 10749 10750 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10748 def distance_type @distance_type end |
#dropout ⇒ Float
Dropout probability for dnn models.
Corresponds to the JSON property dropout
10753 10754 10755 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10753 def dropout @dropout end |
#early_stop ⇒ Boolean Also known as: early_stop?
Whether to stop early when the loss doesn't improve significantly any more (
compared to min_relative_progress). Used only for iterative training
algorithms.
Corresponds to the JSON property earlyStop
10760 10761 10762 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10760 def early_stop @early_stop end |
#enable_global_explain ⇒ Boolean Also known as: enable_global_explain?
If true, enable global explanation during training.
Corresponds to the JSON property enableGlobalExplain
10766 10767 10768 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10766 def enable_global_explain @enable_global_explain end |
#feedback_type ⇒ String
Feedback type that specifies which algorithm to run for matrix factorization.
Corresponds to the JSON property feedbackType
10772 10773 10774 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10772 def feedback_type @feedback_type end |
#fit_intercept ⇒ Boolean Also known as: fit_intercept?
Whether the model should include intercept during model training.
Corresponds to the JSON property fitIntercept
10777 10778 10779 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10777 def fit_intercept @fit_intercept end |
#hidden_units ⇒ Array<Fixnum>
Hidden units for dnn models.
Corresponds to the JSON property hiddenUnits
10783 10784 10785 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10783 def hidden_units @hidden_units end |
#holiday_region ⇒ String
The geographical region based on which the holidays are considered in time
series modeling. If a valid value is specified, then holiday effects modeling
is enabled.
Corresponds to the JSON property holidayRegion
10790 10791 10792 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10790 def holiday_region @holiday_region end |
#holiday_regions ⇒ Array<String>
A list of geographical regions that are used for time series modeling.
Corresponds to the JSON property holidayRegions
10795 10796 10797 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10795 def holiday_regions @holiday_regions end |
#horizon ⇒ Fixnum
The number of periods ahead that need to be forecasted.
Corresponds to the JSON property horizon
10800 10801 10802 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10800 def horizon @horizon end |
#hparam_tuning_objectives ⇒ Array<String>
The target evaluation metrics to optimize the hyperparameters for.
Corresponds to the JSON property hparamTuningObjectives
10805 10806 10807 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10805 def hparam_tuning_objectives @hparam_tuning_objectives end |
#include_drift ⇒ Boolean Also known as: include_drift?
Include drift when fitting an ARIMA model.
Corresponds to the JSON property includeDrift
10810 10811 10812 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10810 def include_drift @include_drift end |
#initial_learn_rate ⇒ Float
Specifies the initial learning rate for the line search learn rate strategy.
Corresponds to the JSON property initialLearnRate
10816 10817 10818 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10816 def initial_learn_rate @initial_learn_rate end |
#input_label_columns ⇒ Array<String>
Name of input label columns in training data.
Corresponds to the JSON property inputLabelColumns
10821 10822 10823 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10821 def input_label_columns @input_label_columns end |
#instance_weight_column ⇒ String
Name of the instance weight column for training data. This column isn't be
used as a feature.
Corresponds to the JSON property instanceWeightColumn
10827 10828 10829 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10827 def instance_weight_column @instance_weight_column end |
#integrated_gradients_num_steps ⇒ Fixnum
Number of integral steps for the integrated gradients explain method.
Corresponds to the JSON property integratedGradientsNumSteps
10832 10833 10834 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10832 def integrated_gradients_num_steps @integrated_gradients_num_steps end |
#item_column ⇒ String
Item column specified for matrix factorization models.
Corresponds to the JSON property itemColumn
10837 10838 10839 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10837 def item_column @item_column end |
#kmeans_initialization_column ⇒ String
The column used to provide the initial centroids for kmeans algorithm when
kmeans_initialization_method is CUSTOM.
Corresponds to the JSON property kmeansInitializationColumn
10843 10844 10845 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10843 def kmeans_initialization_column @kmeans_initialization_column end |
#kmeans_initialization_method ⇒ String
The method used to initialize the centroids for kmeans algorithm.
Corresponds to the JSON property kmeansInitializationMethod
10848 10849 10850 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10848 def kmeans_initialization_method @kmeans_initialization_method end |
#l1_reg_activation ⇒ Float
L1 regularization coefficient to activations.
Corresponds to the JSON property l1RegActivation
10853 10854 10855 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10853 def l1_reg_activation @l1_reg_activation end |
#l1_regularization ⇒ Float
L1 regularization coefficient.
Corresponds to the JSON property l1Regularization
10858 10859 10860 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10858 def l1_regularization @l1_regularization end |
#l2_regularization ⇒ Float
L2 regularization coefficient.
Corresponds to the JSON property l2Regularization
10863 10864 10865 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10863 def l2_regularization @l2_regularization end |
#label_class_weights ⇒ Hash<String,Float>
Weights associated with each label class, for rebalancing the training data.
Only applicable for classification models.
Corresponds to the JSON property labelClassWeights
10869 10870 10871 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10869 def label_class_weights @label_class_weights end |
#learn_rate ⇒ Float
Learning rate in training. Used only for iterative training algorithms.
Corresponds to the JSON property learnRate
10874 10875 10876 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10874 def learn_rate @learn_rate end |
#learn_rate_strategy ⇒ String
The strategy to determine learn rate for the current iteration.
Corresponds to the JSON property learnRateStrategy
10879 10880 10881 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10879 def learn_rate_strategy @learn_rate_strategy end |
#loss_type ⇒ String
Type of loss function used during training run.
Corresponds to the JSON property lossType
10884 10885 10886 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10884 def loss_type @loss_type end |
#max_iterations ⇒ Fixnum
The maximum number of iterations in training. Used only for iterative training
algorithms.
Corresponds to the JSON property maxIterations
10890 10891 10892 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10890 def max_iterations @max_iterations end |
#max_parallel_trials ⇒ Fixnum
Maximum number of trials to run in parallel.
Corresponds to the JSON property maxParallelTrials
10895 10896 10897 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10895 def max_parallel_trials @max_parallel_trials end |
#max_time_series_length ⇒ Fixnum
The maximum number of time points in a time series that can be used in
modeling the trend component of the time series. Don't use this option with
the timeSeriesLengthFraction
or minTimeSeriesLength
options.
Corresponds to the JSON property maxTimeSeriesLength
10902 10903 10904 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10902 def max_time_series_length @max_time_series_length end |
#max_tree_depth ⇒ Fixnum
Maximum depth of a tree for boosted tree models.
Corresponds to the JSON property maxTreeDepth
10907 10908 10909 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10907 def max_tree_depth @max_tree_depth end |
#min_relative_progress ⇒ Float
When early_stop is true, stops training when accuracy improvement is less than
'min_relative_progress'. Used only for iterative training algorithms.
Corresponds to the JSON property minRelativeProgress
10913 10914 10915 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10913 def min_relative_progress @min_relative_progress end |
#min_split_loss ⇒ Float
Minimum split loss for boosted tree models.
Corresponds to the JSON property minSplitLoss
10918 10919 10920 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10918 def min_split_loss @min_split_loss end |
#min_time_series_length ⇒ Fixnum
The minimum number of time points in a time series that are used in modeling
the trend component of the time series. If you use this option you must also
set the timeSeriesLengthFraction
option. This training option ensures that
enough time points are available when you use timeSeriesLengthFraction
in
trend modeling. This is particularly important when forecasting multiple time
series in a single query using timeSeriesIdColumn
. If the total number of
time points is less than the minTimeSeriesLength
value, then the query uses
all available time points.
Corresponds to the JSON property minTimeSeriesLength
10930 10931 10932 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10930 def min_time_series_length @min_time_series_length end |
#min_tree_child_weight ⇒ Fixnum
Minimum sum of instance weight needed in a child for boosted tree models.
Corresponds to the JSON property minTreeChildWeight
10935 10936 10937 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10935 def min_tree_child_weight @min_tree_child_weight end |
#model_registry ⇒ String
The model registry.
Corresponds to the JSON property modelRegistry
10940 10941 10942 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10940 def model_registry @model_registry end |
#model_uri ⇒ String
Google Cloud Storage URI from which the model was imported. Only applicable
for imported models.
Corresponds to the JSON property modelUri
10946 10947 10948 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10946 def model_uri @model_uri end |
#non_seasonal_order ⇒ Google::Apis::BigqueryV2::ArimaOrder
Arima order, can be used for both non-seasonal and seasonal parts.
Corresponds to the JSON property nonSeasonalOrder
10951 10952 10953 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10951 def non_seasonal_order @non_seasonal_order end |
#num_clusters ⇒ Fixnum
Number of clusters for clustering models.
Corresponds to the JSON property numClusters
10956 10957 10958 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10956 def num_clusters @num_clusters end |
#num_factors ⇒ Fixnum
Num factors specified for matrix factorization models.
Corresponds to the JSON property numFactors
10961 10962 10963 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10961 def num_factors @num_factors end |
#num_parallel_tree ⇒ Fixnum
Number of parallel trees constructed during each iteration for boosted tree
models.
Corresponds to the JSON property numParallelTree
10967 10968 10969 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10967 def num_parallel_tree @num_parallel_tree end |
#num_principal_components ⇒ Fixnum
Number of principal components to keep in the PCA model. Must be <= the number
of features.
Corresponds to the JSON property numPrincipalComponents
10973 10974 10975 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10973 def num_principal_components @num_principal_components end |
#num_trials ⇒ Fixnum
Number of trials to run this hyperparameter tuning job.
Corresponds to the JSON property numTrials
10978 10979 10980 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10978 def num_trials @num_trials end |
#optimization_strategy ⇒ String
Optimization strategy for training linear regression models.
Corresponds to the JSON property optimizationStrategy
10983 10984 10985 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10983 def optimization_strategy @optimization_strategy end |
#optimizer ⇒ String
Optimizer used for training the neural nets.
Corresponds to the JSON property optimizer
10988 10989 10990 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10988 def optimizer @optimizer end |
#pca_explained_variance_ratio ⇒ Float
The minimum ratio of cumulative explained variance that needs to be given by
the PCA model.
Corresponds to the JSON property pcaExplainedVarianceRatio
10994 10995 10996 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10994 def pca_explained_variance_ratio @pca_explained_variance_ratio end |
#pca_solver ⇒ String
The solver for PCA.
Corresponds to the JSON property pcaSolver
10999 11000 11001 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 10999 def pca_solver @pca_solver end |
#sampled_shapley_num_paths ⇒ Fixnum
Number of paths for the sampled Shapley explain method.
Corresponds to the JSON property sampledShapleyNumPaths
11004 11005 11006 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11004 def sampled_shapley_num_paths @sampled_shapley_num_paths end |
#scale_features ⇒ Boolean Also known as: scale_features?
If true, scale the feature values by dividing the feature standard deviation.
Currently only apply to PCA.
Corresponds to the JSON property scaleFeatures
11010 11011 11012 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11010 def scale_features @scale_features end |
#standardize_features ⇒ Boolean Also known as: standardize_features?
Whether to standardize numerical features. Default to true.
Corresponds to the JSON property standardizeFeatures
11016 11017 11018 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11016 def standardize_features @standardize_features end |
#subsample ⇒ Float
Subsample fraction of the training data to grow tree to prevent overfitting
for boosted tree models.
Corresponds to the JSON property subsample
11023 11024 11025 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11023 def subsample @subsample end |
#tf_version ⇒ String
Based on the selected TF version, the corresponding docker image is used to
train external models.
Corresponds to the JSON property tfVersion
11029 11030 11031 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11029 def tf_version @tf_version end |
#time_series_data_column ⇒ String
Column to be designated as time series data for ARIMA model.
Corresponds to the JSON property timeSeriesDataColumn
11034 11035 11036 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11034 def time_series_data_column @time_series_data_column end |
#time_series_id_column ⇒ String
The time series id column that was used during ARIMA model training.
Corresponds to the JSON property timeSeriesIdColumn
11039 11040 11041 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11039 def time_series_id_column @time_series_id_column end |
#time_series_id_columns ⇒ Array<String>
The time series id columns that were used during ARIMA model training.
Corresponds to the JSON property timeSeriesIdColumns
11044 11045 11046 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11044 def time_series_id_columns @time_series_id_columns end |
#time_series_length_fraction ⇒ Float
The fraction of the interpolated length of the time series that's used to
model the time series trend component. All of the time points of the time
series are used to model the non-trend component. This training option
accelerates modeling training without sacrificing much forecasting accuracy.
You can use this option with minTimeSeriesLength
but not with
maxTimeSeriesLength
.
Corresponds to the JSON property timeSeriesLengthFraction
11054 11055 11056 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11054 def time_series_length_fraction @time_series_length_fraction end |
#time_series_timestamp_column ⇒ String
Column to be designated as time series timestamp for ARIMA model.
Corresponds to the JSON property timeSeriesTimestampColumn
11059 11060 11061 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11059 def @time_series_timestamp_column end |
#tree_method ⇒ String
Tree construction algorithm for boosted tree models.
Corresponds to the JSON property treeMethod
11064 11065 11066 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11064 def tree_method @tree_method end |
#trend_smoothing_window_size ⇒ Fixnum
Smoothing window size for the trend component. When a positive value is
specified, a center moving average smoothing is applied on the history trend.
When the smoothing window is out of the boundary at the beginning or the end
of the trend, the first element or the last element is padded to fill the
smoothing window before the average is applied.
Corresponds to the JSON property trendSmoothingWindowSize
11073 11074 11075 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11073 def trend_smoothing_window_size @trend_smoothing_window_size end |
#user_column ⇒ String
User column specified for matrix factorization models.
Corresponds to the JSON property userColumn
11078 11079 11080 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11078 def user_column @user_column end |
#vertex_ai_model_version_aliases ⇒ Array<String>
The version aliases to apply in Vertex AI model registry. Always overwrite if
the version aliases exists in a existing model.
Corresponds to the JSON property vertexAiModelVersionAliases
11084 11085 11086 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11084 def vertex_ai_model_version_aliases @vertex_ai_model_version_aliases end |
#wals_alpha ⇒ Float
Hyperparameter for matrix factoration when implicit feedback type is specified.
Corresponds to the JSON property walsAlpha
11089 11090 11091 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11089 def wals_alpha @wals_alpha end |
#warm_start ⇒ Boolean Also known as: warm_start?
Whether to train a model from the last checkpoint.
Corresponds to the JSON property warmStart
11094 11095 11096 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11094 def warm_start @warm_start end |
#xgboost_version ⇒ String
User-selected XGBoost versions for training of XGBoost models.
Corresponds to the JSON property xgboostVersion
11100 11101 11102 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11100 def xgboost_version @xgboost_version end |
Instance Method Details
#update!(**args) ⇒ Object
Update properties of this object
11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 |
# File 'lib/google/apis/bigquery_v2/classes.rb', line 11107 def update!(**args) @activation_fn = args[:activation_fn] if args.key?(:activation_fn) @adjust_step_changes = args[:adjust_step_changes] if args.key?(:adjust_step_changes) @approx_global_feature_contrib = args[:approx_global_feature_contrib] if args.key?(:approx_global_feature_contrib) @auto_arima = args[:auto_arima] if args.key?(:auto_arima) @auto_arima_max_order = args[:auto_arima_max_order] if args.key?(:auto_arima_max_order) @auto_arima_min_order = args[:auto_arima_min_order] if args.key?(:auto_arima_min_order) @auto_class_weights = args[:auto_class_weights] if args.key?(:auto_class_weights) @batch_size = args[:batch_size] if args.key?(:batch_size) @booster_type = args[:booster_type] if args.key?(:booster_type) @budget_hours = args[:budget_hours] if args.key?(:budget_hours) @calculate_p_values = args[:calculate_p_values] if args.key?(:calculate_p_values) @category_encoding_method = args[:category_encoding_method] if args.key?(:category_encoding_method) @clean_spikes_and_dips = args[:clean_spikes_and_dips] if args.key?(:clean_spikes_and_dips) @color_space = args[:color_space] if args.key?(:color_space) @colsample_bylevel = args[:colsample_bylevel] if args.key?(:colsample_bylevel) @colsample_bynode = args[:colsample_bynode] if args.key?(:colsample_bynode) @colsample_bytree = args[:colsample_bytree] if args.key?(:colsample_bytree) @dart_normalize_type = args[:dart_normalize_type] if args.key?(:dart_normalize_type) @data_frequency = args[:data_frequency] if args.key?(:data_frequency) @data_split_column = args[:data_split_column] if args.key?(:data_split_column) @data_split_eval_fraction = args[:data_split_eval_fraction] if args.key?(:data_split_eval_fraction) @data_split_method = args[:data_split_method] if args.key?(:data_split_method) @decompose_time_series = args[:decompose_time_series] if args.key?(:decompose_time_series) @distance_type = args[:distance_type] if args.key?(:distance_type) @dropout = args[:dropout] if args.key?(:dropout) @early_stop = args[:early_stop] if args.key?(:early_stop) @enable_global_explain = args[:enable_global_explain] if args.key?(:enable_global_explain) @feedback_type = args[:feedback_type] if args.key?(:feedback_type) @fit_intercept = args[:fit_intercept] if args.key?(:fit_intercept) @hidden_units = args[:hidden_units] if args.key?(:hidden_units) @holiday_region = args[:holiday_region] if args.key?(:holiday_region) @holiday_regions = args[:holiday_regions] if args.key?(:holiday_regions) @horizon = args[:horizon] if args.key?(:horizon) @hparam_tuning_objectives = args[:hparam_tuning_objectives] if args.key?(:hparam_tuning_objectives) @include_drift = args[:include_drift] if args.key?(:include_drift) @initial_learn_rate = args[:initial_learn_rate] if args.key?(:initial_learn_rate) @input_label_columns = args[:input_label_columns] if args.key?(:input_label_columns) @instance_weight_column = args[:instance_weight_column] if args.key?(:instance_weight_column) @integrated_gradients_num_steps = args[:integrated_gradients_num_steps] if args.key?(:integrated_gradients_num_steps) @item_column = args[:item_column] if args.key?(:item_column) @kmeans_initialization_column = args[:kmeans_initialization_column] if args.key?(:kmeans_initialization_column) @kmeans_initialization_method = args[:kmeans_initialization_method] if args.key?(:kmeans_initialization_method) @l1_reg_activation = args[:l1_reg_activation] if args.key?(:l1_reg_activation) @l1_regularization = args[:l1_regularization] if args.key?(:l1_regularization) @l2_regularization = args[:l2_regularization] if args.key?(:l2_regularization) @label_class_weights = args[:label_class_weights] if args.key?(:label_class_weights) @learn_rate = args[:learn_rate] if args.key?(:learn_rate) @learn_rate_strategy = args[:learn_rate_strategy] if args.key?(:learn_rate_strategy) @loss_type = args[:loss_type] if args.key?(:loss_type) @max_iterations = args[:max_iterations] if args.key?(:max_iterations) @max_parallel_trials = args[:max_parallel_trials] if args.key?(:max_parallel_trials) @max_time_series_length = args[:max_time_series_length] if args.key?(:max_time_series_length) @max_tree_depth = args[:max_tree_depth] if args.key?(:max_tree_depth) @min_relative_progress = args[:min_relative_progress] if args.key?(:min_relative_progress) @min_split_loss = args[:min_split_loss] if args.key?(:min_split_loss) @min_time_series_length = args[:min_time_series_length] if args.key?(:min_time_series_length) @min_tree_child_weight = args[:min_tree_child_weight] if args.key?(:min_tree_child_weight) @model_registry = args[:model_registry] if args.key?(:model_registry) @model_uri = args[:model_uri] if args.key?(:model_uri) @non_seasonal_order = args[:non_seasonal_order] if args.key?(:non_seasonal_order) @num_clusters = args[:num_clusters] if args.key?(:num_clusters) @num_factors = args[:num_factors] if args.key?(:num_factors) @num_parallel_tree = args[:num_parallel_tree] if args.key?(:num_parallel_tree) @num_principal_components = args[:num_principal_components] if args.key?(:num_principal_components) @num_trials = args[:num_trials] if args.key?(:num_trials) @optimization_strategy = args[:optimization_strategy] if args.key?(:optimization_strategy) @optimizer = args[:optimizer] if args.key?(:optimizer) @pca_explained_variance_ratio = args[:pca_explained_variance_ratio] if args.key?(:pca_explained_variance_ratio) @pca_solver = args[:pca_solver] if args.key?(:pca_solver) @sampled_shapley_num_paths = args[:sampled_shapley_num_paths] if args.key?(:sampled_shapley_num_paths) @scale_features = args[:scale_features] if args.key?(:scale_features) @standardize_features = args[:standardize_features] if args.key?(:standardize_features) @subsample = args[:subsample] if args.key?(:subsample) @tf_version = args[:tf_version] if args.key?(:tf_version) @time_series_data_column = args[:time_series_data_column] if args.key?(:time_series_data_column) @time_series_id_column = args[:time_series_id_column] if args.key?(:time_series_id_column) @time_series_id_columns = args[:time_series_id_columns] if args.key?(:time_series_id_columns) @time_series_length_fraction = args[:time_series_length_fraction] if args.key?(:time_series_length_fraction) @time_series_timestamp_column = args[:time_series_timestamp_column] if args.key?(:time_series_timestamp_column) @tree_method = args[:tree_method] if args.key?(:tree_method) @trend_smoothing_window_size = args[:trend_smoothing_window_size] if args.key?(:trend_smoothing_window_size) @user_column = args[:user_column] if args.key?(:user_column) @vertex_ai_model_version_aliases = args[:vertex_ai_model_version_aliases] if args.key?(:vertex_ai_model_version_aliases) @wals_alpha = args[:wals_alpha] if args.key?(:wals_alpha) @warm_start = args[:warm_start] if args.key?(:warm_start) @xgboost_version = args[:xgboost_version] if args.key?(:xgboost_version) end |