Class: Disco::Recommender
- Inherits:
-
Object
- Object
- Disco::Recommender
- Defined in:
- lib/disco/recommender.rb
Instance Attribute Summary collapse
-
#global_mean ⇒ Object
readonly
Returns the value of attribute global_mean.
Class Method Summary collapse
Instance Method Summary collapse
- #fit(train_set, validation_set: nil) ⇒ Object
-
#initialize(factors: 8, epochs: 20, verbose: nil, top_items: false) ⇒ Recommender
constructor
A new instance of Recommender.
- #inspect ⇒ Object
- #item_factors(item_id = nil) ⇒ Object
- #item_ids ⇒ Object
- #optimize_similar_items(library: nil) ⇒ Object (also: #optimize_item_recs)
- #optimize_similar_users(library: nil) ⇒ Object
- #optimize_user_recs ⇒ Object
-
#predict(data) ⇒ Object
generates a prediction even if a user has already rated the item.
- #similar_items(item_id, count: 5) ⇒ Object (also: #item_recs)
- #similar_users(user_id, count: 5) ⇒ Object
- #to_json ⇒ Object
- #top_items(count: 5) ⇒ Object
- #user_factors(user_id = nil) ⇒ Object
- #user_ids ⇒ Object
- #user_recs(user_id, count: 5, item_ids: nil) ⇒ Object
Constructor Details
#initialize(factors: 8, epochs: 20, verbose: nil, top_items: false) ⇒ Recommender
Returns a new instance of Recommender.
5 6 7 8 9 10 11 12 |
# File 'lib/disco/recommender.rb', line 5 def initialize(factors: 8, epochs: 20, verbose: nil, top_items: false) @factors = factors @epochs = epochs @verbose = verbose @user_map = {} @item_map = {} @top_items = top_items end |
Instance Attribute Details
#global_mean ⇒ Object (readonly)
Returns the value of attribute global_mean.
3 4 5 |
# File 'lib/disco/recommender.rb', line 3 def global_mean @global_mean end |
Class Method Details
.load_json(json) ⇒ Object
293 294 295 296 297 298 299 300 301 |
# File 'lib/disco/recommender.rb', line 293 def self.load_json(json) require "json" obj = JSON.parse(json) recommender = new recommender.send(:json_load, obj) recommender end |
Instance Method Details
#fit(train_set, validation_set: nil) ⇒ Object
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
# File 'lib/disco/recommender.rb', line 14 def fit(train_set, validation_set: nil) train_set = to_dataset(train_set) validation_set = to_dataset(validation_set) if validation_set check_training_set(train_set) # TODO option to set in initializer to avoid pass # could also just check first few values # but may be confusing if they are all missing and later ones aren't @implicit = !train_set.any? { |v| v[:rating] } if @implicit && train_set.any? { |v| v[:value] } raise ArgumentError, "Passing `:value` with implicit feedback has no effect on recommendations and should be removed. Earlier versions of the library incorrectly stated this was used." end # TODO improve performance # (catch exception instead of checking ahead of time) unless @implicit (train_set) if validation_set (validation_set) end end @user_map = {} @item_map = {} @rated = Hash.new { |hash, key| hash[key] = {} } input = [] train_set.each do |v| # update maps and build matrix in single pass u = (@user_map[v[:user_id]] ||= @user_map.size) i = (@item_map[v[:item_id]] ||= @item_map.size) @rated[u][i] = true # explicit will always have a value due to check_ratings input << [u, i, @implicit ? 1 : v[:rating]] end @rated.default = nil # much more efficient than checking every value in another pass raise ArgumentError, "Missing user_id" if @user_map.key?(nil) raise ArgumentError, "Missing item_id" if @item_map.key?(nil) # TODO improve performance unless @implicit @min_rating, @max_rating = train_set.minmax_by { |o| o[:rating] }.map { |o| o[:rating] } else @min_rating = nil @max_rating = nil end if @top_items @item_count = Array.new(@item_map.size, 0) @item_sum = Array.new(@item_map.size, 0.0) train_set.each do |v| i = @item_map[v[:item_id]] @item_count[i] += 1 @item_sum[i] += (@implicit ? 1 : v[:rating]) end end eval_set = nil if validation_set eval_set = [] validation_set.each do |v| u = @user_map[v[:user_id]] i = @item_map[v[:item_id]] # set to non-existent item u ||= -1 i ||= -1 eval_set << [u, i, @implicit ? 1 : v[:rating]] end end loss = @implicit ? 12 : 0 verbose = @verbose verbose = true if verbose.nil? && eval_set model = Libmf::Model.new(loss: loss, factors: @factors, iterations: @epochs, quiet: !verbose) model.fit(input, eval_set: eval_set) @global_mean = model.bias @user_factors = model.p_factors(format: :numo) @item_factors = model.q_factors(format: :numo) @user_norms = nil @item_norms = nil @user_recs_index = nil @similar_users_index = nil @similar_items_index = nil end |
#inspect ⇒ Object
259 260 261 |
# File 'lib/disco/recommender.rb', line 259 def inspect to_s # for now end |
#item_factors(item_id = nil) ⇒ Object
234 235 236 237 238 239 240 241 |
# File 'lib/disco/recommender.rb', line 234 def item_factors(item_id = nil) if item_id i = @item_map[item_id] @item_factors[i, true] if i else @item_factors end end |
#item_ids ⇒ Object
221 222 223 |
# File 'lib/disco/recommender.rb', line 221 def item_ids @item_map.keys end |
#optimize_similar_items(library: nil) ⇒ Object Also known as: optimize_item_recs
248 249 250 251 |
# File 'lib/disco/recommender.rb', line 248 def optimize_similar_items(library: nil) check_fit @similar_items_index = create_index(@item_factors / item_norms.(1), library: library) end |
#optimize_similar_users(library: nil) ⇒ Object
254 255 256 257 |
# File 'lib/disco/recommender.rb', line 254 def optimize_similar_users(library: nil) check_fit @similar_users_index = create_index(@user_factors / user_norms.(1), library: library) end |
#optimize_user_recs ⇒ Object
243 244 245 246 |
# File 'lib/disco/recommender.rb', line 243 def optimize_user_recs check_fit @user_recs_index = create_index(item_factors, library: "faiss") end |
#predict(data) ⇒ Object
generates a prediction even if a user has already rated the item
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
# File 'lib/disco/recommender.rb', line 111 def predict(data) data = to_dataset(data) u = data.map { |v| @user_map[v[:user_id]] } i = data.map { |v| @item_map[v[:item_id]] } new_index = data.each_index.select { |index| u[index].nil? || i[index].nil? } new_index.each do |j| u[j] = 0 i[j] = 0 end predictions = @user_factors[u, true].inner(@item_factors[i, true]) predictions.inplace.clip(@min_rating, @max_rating) if @min_rating predictions[new_index] = @global_mean predictions.to_a end |
#similar_items(item_id, count: 5) ⇒ Object Also known as: item_recs
173 174 175 176 |
# File 'lib/disco/recommender.rb', line 173 def similar_items(item_id, count: 5) check_fit similar(item_id, :item_id, @item_map, @item_factors, item_norms, count, @similar_items_index) end |
#similar_users(user_id, count: 5) ⇒ Object
179 180 181 182 |
# File 'lib/disco/recommender.rb', line 179 def similar_users(user_id, count: 5) check_fit similar(user_id, :user_id, @user_map, @user_factors, user_norms, count, @similar_users_index) end |
#to_json ⇒ Object
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
# File 'lib/disco/recommender.rb', line 263 def to_json require "base64" require "json" obj = { implicit: @implicit, user_ids: @user_map.keys, item_ids: @item_map.keys, rated: @user_map.map { |_, u| (@rated[u] || {}).keys }, global_mean: @global_mean, user_factors: Base64.strict_encode64(@user_factors.to_binary), item_factors: Base64.strict_encode64(@item_factors.to_binary), factors: @factors, epochs: @epochs, verbose: @verbose } unless @implicit obj[:min_rating] = @min_rating obj[:max_rating] = @max_rating end if @top_items obj[:item_count] = @item_count obj[:item_sum] = @item_sum end JSON.generate(obj) end |
#top_items(count: 5) ⇒ Object
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
# File 'lib/disco/recommender.rb', line 184 def top_items(count: 5) check_fit raise "top_items not computed" unless @top_items if @implicit scores = Numo::UInt64.cast(@item_count) else = @min_rating # TODO remove temp fix -= 1 if @min_rating == @max_rating # wilson score with continuity correction # https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Wilson_score_interval_with_continuity_correction z = 1.96 # 95% confidence range = @max_rating - @min_rating n = Numo::DFloat.cast(@item_count) phat = (Numo::DFloat.cast(@item_sum) - ( * n)) / range / n phat = (phat - (1 / (2 * n))).clip(0, nil) # continuity correction scores = (phat + z**2 / (2 * n) - z * Numo::DFloat::Math.sqrt((phat * (1 - phat) + z**2 / (4 * n)) / n)) / (1 + z**2 / n) scores = scores * range + end indexes = scores.sort_index.reverse indexes = indexes[0...[count, indexes.size].min] if count scores = scores[indexes] keys = @item_map.keys indexes.size.times.map do |i| {item_id: keys[indexes[i]], score: scores[i]} end end |
#user_factors(user_id = nil) ⇒ Object
225 226 227 228 229 230 231 232 |
# File 'lib/disco/recommender.rb', line 225 def user_factors(user_id = nil) if user_id u = @user_map[user_id] @user_factors[u, true] if u else @user_factors end end |
#user_ids ⇒ Object
217 218 219 |
# File 'lib/disco/recommender.rb', line 217 def user_ids @user_map.keys end |
#user_recs(user_id, count: 5, item_ids: nil) ⇒ Object
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# File 'lib/disco/recommender.rb', line 129 def user_recs(user_id, count: 5, item_ids: nil) check_fit u = @user_map[user_id] if u rated = item_ids ? {} : @rated[u] if item_ids ids = Numo::NArray.cast(item_ids.map { |i| @item_map[i] }.compact) return [] if ids.size == 0 predictions = @item_factors[ids, true].inner(@user_factors[u, true]) indexes = predictions.sort_index.reverse indexes = indexes[0...[count + rated.size, indexes.size].min] if count predictions = predictions[indexes] ids = ids[indexes] elsif @user_recs_index && count predictions, ids = @user_recs_index.search(@user_factors[u, true].(0), count + rated.size).map { |v| v[0, true] } else predictions = @item_factors.inner(@user_factors[u, true]) indexes = predictions.sort_index.reverse # reverse just creates view indexes = indexes[0...[count + rated.size, indexes.size].min] if count predictions = predictions[indexes] ids = indexes end predictions.inplace.clip(@min_rating, @max_rating) if @min_rating keys = @item_map.keys result = [] ids.each_with_index do |item_id, i| next if rated[item_id] result << {item_id: keys[item_id], score: predictions[i]} break if result.size == count end result elsif @top_items top_items(count: count) else [] end end |