Module: Concurrent

Defined in:
lib/concurrent-ruby/concurrent.rb,
lib/concurrent-ruby/concurrent/map.rb,
lib/concurrent-ruby/concurrent/set.rb,
lib/concurrent-ruby/concurrent/atom.rb,
lib/concurrent-ruby/concurrent/hash.rb,
lib/concurrent-ruby/concurrent/ivar.rb,
lib/concurrent-ruby/concurrent/mvar.rb,
lib/concurrent-ruby/concurrent/tvar.rb,
lib/concurrent-ruby/concurrent/agent.rb,
lib/concurrent-ruby/concurrent/array.rb,
lib/concurrent-ruby/concurrent/async.rb,
lib/concurrent-ruby/concurrent/delay.rb,
lib/concurrent-ruby/concurrent/maybe.rb,
lib/concurrent-ruby/concurrent/tuple.rb,
lib/concurrent-ruby/concurrent/errors.rb,
lib/concurrent-ruby/concurrent/future.rb,
lib/concurrent-ruby/concurrent/options.rb,
lib/concurrent-ruby/concurrent/promise.rb,
lib/concurrent-ruby/concurrent/version.rb,
lib/concurrent-ruby/concurrent/dataflow.rb,
lib/concurrent-ruby/concurrent/promises.rb,
lib/concurrent-ruby/concurrent/constants.rb,
lib/concurrent-ruby/concurrent/exchanger.rb,
lib/concurrent-ruby/concurrent/re_include.rb,
lib/concurrent-ruby/concurrent/timer_task.rb,
lib/concurrent-ruby/concurrent/atomic/event.rb,
lib/concurrent-ruby/concurrent/atomic/locals.rb,
lib/concurrent-ruby/concurrent/configuration.rb,
lib/concurrent-ruby/concurrent/mutable_struct.rb,
lib/concurrent-ruby/concurrent/scheduled_task.rb,
lib/concurrent-ruby/concurrent/utility/engine.rb,
lib/concurrent-ruby/concurrent/concern/logging.rb,
lib/concurrent-ruby/concurrent/concern/logging.rb,
lib/concurrent-ruby/concurrent/settable_struct.rb,
lib/concurrent-ruby/concurrent/synchronization.rb,
lib/concurrent-ruby/concurrent/atomic/semaphore.rb,
lib/concurrent-ruby/concurrent/immutable_struct.rb,
lib/concurrent-ruby/concurrent/thread_safe/util.rb,
lib/concurrent-ruby/concurrent/concern/obligation.rb,
lib/concurrent-ruby/concurrent/concern/observable.rb,
lib/concurrent-ruby/concurrent/executor/timer_set.rb,
lib/concurrent-ruby/concurrent/concern/deprecation.rb,
lib/concurrent-ruby/concurrent/atomic/atomic_fixnum.rb,
lib/concurrent-ruby/concurrent/synchronization/lock.rb,
lib/concurrent-ruby/concurrent/atomic/atomic_boolean.rb,
lib/concurrent-ruby/concurrent/atomic/cyclic_barrier.rb,
lib/concurrent-ruby/concurrent/atomic/lock_local_var.rb,
lib/concurrent-ruby/concurrent/atomic/fiber_local_var.rb,
lib/concurrent-ruby/concurrent/atomic/mutex_semaphore.rb,
lib/concurrent-ruby/concurrent/atomic/read_write_lock.rb,
lib/concurrent-ruby/concurrent/synchronization/object.rb,
lib/concurrent-ruby/concurrent/thread_safe/util/adder.rb,
lib/concurrent-ruby/concurrent/utility/monotonic_time.rb,
lib/concurrent-ruby/concurrent/utility/native_integer.rb,
lib/concurrent-ruby/concurrent/atomic/atomic_reference.rb,
lib/concurrent-ruby/concurrent/atomic/count_down_latch.rb,
lib/concurrent-ruby/concurrent/atomic/thread_local_var.rb,
lib/concurrent-ruby/concurrent/concern/dereferenceable.rb,
lib/concurrent-ruby/concurrent/synchronization/volatile.rb,
lib/concurrent-ruby/concurrent/executor/executor_service.rb,
lib/concurrent-ruby/concurrent/synchronization/condition.rb,
lib/concurrent-ruby/concurrent/thread_safe/util/volatile.rb,
lib/concurrent-ruby/concurrent/utility/processor_counter.rb,
lib/concurrent-ruby/concurrent/atomic/mutex_atomic_fixnum.rb,
lib/concurrent-ruby/concurrent/collection/lock_free_stack.rb,
lib/concurrent-ruby/concurrent/executor/fixed_thread_pool.rb,
lib/concurrent-ruby/concurrent/thread_safe/util/striped64.rb,
lib/concurrent-ruby/concurrent/atomic/mutex_atomic_boolean.rb,
lib/concurrent-ruby/concurrent/executor/cached_thread_pool.rb,
lib/concurrent-ruby/concurrent/executor/immediate_executor.rb,
lib/concurrent-ruby/concurrent/executor/safe_task_executor.rb,
lib/concurrent-ruby/concurrent/atomic/java_count_down_latch.rb,
lib/concurrent-ruby/concurrent/atomic/mutex_count_down_latch.rb,
lib/concurrent-ruby/concurrent/atomic_reference/mutex_atomic.rb,
lib/concurrent-ruby/concurrent/executor/serialized_execution.rb,
lib/concurrent-ruby/concurrent/executor/thread_pool_executor.rb,
lib/concurrent-ruby/concurrent/collection/map/mri_map_backend.rb,
lib/concurrent-ruby/concurrent/executor/java_executor_service.rb,
lib/concurrent-ruby/concurrent/executor/ruby_executor_service.rb,
lib/concurrent-ruby/concurrent/executor/single_thread_executor.rb,
lib/concurrent-ruby/concurrent/synchronization/abstract_object.rb,
lib/concurrent-ruby/concurrent/synchronization/abstract_struct.rb,
lib/concurrent-ruby/concurrent/synchronization/lockable_object.rb,
lib/concurrent-ruby/concurrent/utility/native_extension_loader.rb,
lib/concurrent-ruby/concurrent/atomic/atomic_markable_reference.rb,
lib/concurrent-ruby/concurrent/atomic/reentrant_read_write_lock.rb,
lib/concurrent-ruby/concurrent/executor/serial_executor_service.rb,
lib/concurrent-ruby/concurrent/executor/simple_executor_service.rb,
lib/concurrent-ruby/concurrent/thread_safe/util/data_structures.rb,
lib/concurrent-ruby/concurrent/thread_safe/util/xor_shift_random.rb,
lib/concurrent-ruby/concurrent/executor/abstract_executor_service.rb,
lib/concurrent-ruby/concurrent/executor/java_thread_pool_executor.rb,
lib/concurrent-ruby/concurrent/executor/ruby_thread_pool_executor.rb,
lib/concurrent-ruby/concurrent/thread_safe/synchronized_delegator.rb,
lib/concurrent-ruby/concurrent/synchronization/full_memory_barrier.rb,
lib/concurrent-ruby/concurrent/synchronization/safe_initialization.rb,
lib/concurrent-ruby/concurrent/thread_safe/util/power_of_two_tuple.rb,
lib/concurrent-ruby/concurrent/atomic_reference/numeric_cas_wrapper.rb,
lib/concurrent-ruby/concurrent/executor/indirect_immediate_executor.rb,
lib/concurrent-ruby/concurrent/executor/java_single_thread_executor.rb,
lib/concurrent-ruby/concurrent/executor/ruby_single_thread_executor.rb,
lib/concurrent-ruby/concurrent/atomic_reference/atomic_direct_update.rb,
lib/concurrent-ruby/concurrent/collection/copy_on_write_observer_set.rb,
lib/concurrent-ruby/concurrent/synchronization/jruby_lockable_object.rb,
lib/concurrent-ruby/concurrent/synchronization/mutex_lockable_object.rb,
lib/concurrent-ruby/concurrent/collection/copy_on_notify_observer_set.rb,
lib/concurrent-ruby/concurrent/collection/map/truffleruby_map_backend.rb,
lib/concurrent-ruby/concurrent/collection/map/synchronized_map_backend.rb,
lib/concurrent-ruby/concurrent/executor/serialized_execution_delegator.rb,
lib/concurrent-ruby/concurrent/collection/non_concurrent_priority_queue.rb,
lib/concurrent-ruby/concurrent/synchronization/abstract_lockable_object.rb,
lib/concurrent-ruby/concurrent/collection/map/non_concurrent_map_backend.rb,
lib/concurrent-ruby/concurrent/collection/java_non_concurrent_priority_queue.rb,
lib/concurrent-ruby/concurrent/collection/ruby_non_concurrent_priority_queue.rb

Overview

Concurrent Ruby

Gem Version License Gitter chat

Modern concurrency tools for Ruby. Inspired by Erlang, Clojure, Scala, Haskell, F#, C#, Java, and classic concurrency patterns.

The design goals of this gem are:

  • Be an 'unopinionated' toolbox that provides useful utilities without debating which is better or why
  • Remain free of external gem dependencies
  • Stay true to the spirit of the languages providing inspiration
  • But implement in a way that makes sense for Ruby
  • Keep the semantics as idiomatic Ruby as possible
  • Support features that make sense in Ruby
  • Exclude features that don't make sense in Ruby
  • Be small, lean, and loosely coupled
  • Thread-safety
  • Backward compatibility

Contributing

This gem depends on contributions and we appreciate your help. Would you like to contribute? Great! Have a look at issues with looking-for-contributor label. And if you pick something up let us know on the issue.

You can also get started by triaging issues which may include reproducing bug reports or asking for vital information, such as version numbers or reproduction instructions. If you would like to start triaging issues, one easy way to get started is to subscribe to concurrent-ruby on CodeTriage. Open Source Helpers

Thread Safety

Concurrent Ruby makes one of the strongest thread safety guarantees of any Ruby concurrency library, providing consistent behavior and guarantees on all three main Ruby interpreters (MRI/CRuby, JRuby, TruffleRuby).

Every abstraction in this library is thread safe. Specific thread safety guarantees are documented with each abstraction.

It is critical to remember, however, that Ruby is a language of mutable references. No concurrency library for Ruby can ever prevent the user from making thread safety mistakes (such as sharing a mutable object between threads and modifying it on both threads) or from creating deadlocks through incorrect use of locks. All the library can do is provide safe abstractions which encourage safe practices. Concurrent Ruby provides more safe concurrency abstractions than any other Ruby library, many of which support the mantra of "Do not communicate by sharing memory; instead, share memory by communicating". Concurrent Ruby is also the only Ruby library which provides a full suite of thread safe and immutable variable types and data structures.

We've also initiated discussion to document the memory model of Ruby which would provide consistent behaviour and guarantees on all three main Ruby interpreters (MRI/CRuby, JRuby, TruffleRuby).

Features & Documentation

The primary site for documentation is the automatically generated API documentation which is up to date with latest release. This readme matches the master so may contain new stuff not yet released.

We also have a IRC (gitter).

Versioning

  • concurrent-ruby uses Semantic Versioning
  • concurrent-ruby-ext has always same version as concurrent-ruby
  • concurrent-ruby-edge will always be 0.y.z therefore following point 4 applies "Major version zero (0.y.z) is for initial development. Anything may change at any time. The public API should not be considered stable." However we additionally use following rules:
    • Minor version increment means incompatible changes were made
    • Patch version increment means only compatible changes were made

General-purpose Concurrency Abstractions

  • Async: A mixin module that provides simple asynchronous behavior to a class. Loosely based on Erlang's gen_server.
  • ScheduledTask: Like a Future scheduled for a specific future time.
  • TimerTask: A Thread that periodically wakes up to perform work at regular intervals.
  • Promises: Unified implementation of futures and promises which combines features of previous Future, Promise, IVar, Event, dataflow, Delay, and (partially) TimerTask into a single framework. It extensively uses the new synchronization layer to make all the features non-blocking and lock-free, with the exception of obviously blocking operations like #wait, #value. It also offers better performance.

Thread-safe Value Objects, Structures, and Collections

Collection classes that were originally part of the (deprecated) thread_safe gem:

  • Array A thread-safe subclass of Ruby's standard Array.
  • Hash A thread-safe subclass of Ruby's standard Hash.
  • Set A thread-safe subclass of Ruby's standard Set.
  • Map A hash-like object that should have much better performance characteristics, especially under high concurrency, than Concurrent::Hash.
  • Tuple A fixed size array with volatile (synchronized, thread safe) getters/setters.

Value objects inspired by other languages:

Structure classes derived from Ruby's Struct:

  • ImmutableStruct Immutable struct where values are set at construction and cannot be changed later.
  • MutableStruct Synchronized, mutable struct where values can be safely changed at any time.
  • SettableStruct Synchronized, write-once struct where values can be set at most once, either at construction or any time thereafter.

Thread-safe variables:

  • Agent: A way to manage shared, mutable, asynchronous, independent state. Based on Clojure's Agent.
  • Atom: A way to manage shared, mutable, synchronous, independent state. Based on Clojure's Atom.
  • AtomicBoolean A boolean value that can be updated atomically.
  • AtomicFixnum A numeric value that can be updated atomically.
  • AtomicReference An object reference that may be updated atomically.
  • Exchanger A synchronization point at which threads can pair and swap elements within pairs. Based on Java's Exchanger.
  • MVar A synchronized single element container. Based on Haskell's MVar and Scala's MVar.
  • ThreadLocalVar A variable where the value is different for each thread.
  • TVar A transactional variable implementing software transactional memory (STM). Based on Clojure's Ref.

Java-inspired ThreadPools and Other Executors

  • See the thread pool overview, which also contains a list of other Executors available.

Thread Synchronization Classes and Algorithms

  • CountDownLatch A synchronization object that allows one thread to wait on multiple other threads.
  • CyclicBarrier A synchronization aid that allows a set of threads to all wait for each other to reach a common barrier point.
  • Event Old school kernel-style event.
  • ReadWriteLock A lock that supports multiple readers but only one writer.
  • ReentrantReadWriteLock A read/write lock with reentrant and upgrade features.
  • Semaphore A counting-based locking mechanism that uses permits.
  • AtomicMarkableReference

Deprecated

Deprecated features are still available and bugs are being fixed, but new features will not be added.

  • ~~Future: An asynchronous operation that produces a value.~~ Replaced by Promises.
    • ~~.dataflow: Built on Futures, Dataflow allows you to create a task that will be scheduled when all of its data dependencies are available.~~ Replaced by Promises.
  • ~~Promise: Similar to Futures, with more features.~~ Replaced by Promises.
  • ~~Delay Lazy evaluation of a block yielding an immutable result. Based on Clojure's delay.~~ Replaced by Promises.
  • ~~IVar Similar to a "future" but can be manually assigned once, after which it becomes immutable.~~ Replaced by Promises.

Edge Features

These are available in the concurrent-ruby-edge companion gem.

These features are under active development and may change frequently. They are expected not to keep backward compatibility (there may also lack tests and documentation). Semantic versions will be obeyed though. Features developed in concurrent-ruby-edge are expected to move to concurrent-ruby when final.

  • Actor: Implements the Actor Model, where concurrent actors exchange messages. Status: Partial documentation and tests; depends on new future/promise framework; stability is good.
  • Channel: Communicating Sequential Processes (CSP). Functionally equivalent to Go channels with additional inspiration from Clojure core.async. Status: Partial documentation and tests.
  • LazyRegister
  • LockFreeLinkedSet Status: will be moved to core soon.
  • LockFreeStack Status: missing documentation and tests.
  • Promises::Channel A first in first out channel that accepts messages with push family of methods and returns messages with pop family of methods. Pop and push operations can be represented as futures, see #pop_op and #push_op. The capacity of the channel can be limited to support back pressure, use capacity option in #initialize. #pop method blocks ans #pop_op returns pending future if there is no message in the channel. If the capacity is limited the #push method blocks and #push_op returns pending future.
  • Cancellation The Cancellation abstraction provides cooperative cancellation.

    The standard methods Thread#raise of Thread#kill available in Ruby are very dangerous (see linked the blog posts bellow). Therefore concurrent-ruby provides an alternative.

    It provides an object which represents a task which can be executed, the task has to get the reference to the object and periodically cooperatively check that it is not cancelled. Good practices to make tasks cancellable:

    • check cancellation every cycle of a loop which does significant work,
    • do all blocking actions in a loop with a timeout then on timeout check cancellation and if ok block again with the timeout
  • Throttle A tool managing concurrency level of tasks.

  • ErlangActor Actor implementation which precisely matches Erlang actor behaviour. Requires at least Ruby 2.1 otherwise it's not loaded.

  • WrappingExecutor A delegating executor which modifies each task before the task is given to the target executor it delegates to.

Supported Ruby versions

  • MRI 2.3 and above
  • Latest JRuby 9000
  • Latest TruffleRuby

Usage

Everything within this gem can be loaded simply by requiring it:

require 'concurrent'

You can also require a specific abstraction part of the public documentation since concurrent-ruby 1.2.0, for example:

require 'concurrent/map'
require 'concurrent/atomic/atomic_reference'
require 'concurrent/executor/fixed_thread_pool'

To use the tools in the Edge gem it must be required separately:

require 'concurrent-edge'

If the library does not behave as expected, Concurrent.use_stdlib_logger(Logger::DEBUG) could help to reveal the problem.

Installation

gem install concurrent-ruby

or add the following line to Gemfile:

gem 'concurrent-ruby', require: 'concurrent'

and run bundle install from your shell.

Edge Gem Installation

The Edge gem must be installed separately from the core gem:

gem install concurrent-ruby-edge

or add the following line to Gemfile:

gem 'concurrent-ruby-edge', require: 'concurrent-edge'

and run bundle install from your shell.

C Extensions for MRI

Potential performance improvements may be achieved under MRI by installing optional C extensions. To minimise installation errors the C extensions are available in the concurrent-ruby-ext extension gem. concurrent-ruby and concurrent-ruby-ext are always released together with same version. Simply install the extension gem too:

gem install concurrent-ruby-ext

or add the following line to Gemfile:

gem 'concurrent-ruby-ext'

and run bundle install from your shell.

In code it is only necessary to

require 'concurrent'

The concurrent-ruby gem will automatically detect the presence of the concurrent-ruby-ext gem and load the appropriate C extensions.

Note For gem developers

No gems should depend on concurrent-ruby-ext. Doing so will force C extensions on your users. The best practice is to depend on concurrent-ruby and let users to decide if they want C extensions.

Building the gem

Requirements

  • Recent CRuby
  • JRuby, rbenv install jruby-9.2.17.0
  • Set env variable CONCURRENT_JRUBY_HOME to point to it, e.g. /usr/local/opt/rbenv/versions/jruby-9.2.17.0
  • Install Docker, required for Windows builds

Publishing the Gem

  • Update version.rb
  • Update the CHANGELOG
  • Add the new version to docs-source/signpost.md. Needs to be done only if there are visible changes in the documentation.
  • Commit (and push) the changes.
  • Use bundle exec rake release to release the gem. It consists of ['release:checks', 'release:build', 'release:test', 'release:publish'] steps. It will ask at the end before publishing anything. Steps can also be executed individually.

Maintainers

Special Thanks to

to the past maintainers

and to Ruby Association for sponsoring a project "Enhancing Ruby’s concurrency tooling" in 2018.

Concurrent Ruby is free software released under the MIT License.

The Concurrent Ruby logo was designed by David Jones. It is Copyright © 2014 Jerry D'Antonio. All Rights Reserved.

Defined Under Namespace

Modules: Async, Concern, ImmutableStruct, MutableStruct, Promises, SettableStruct Classes: Agent, Array, Atom, AtomicBoolean, AtomicFixnum, AtomicMarkableReference, AtomicReference, CachedThreadPool, ConcurrentUpdateError, CountDownLatch, CyclicBarrier, Delay, Event, Exchanger, FiberLocalVar, FixedThreadPool, Future, Hash, IVar, ImmediateExecutor, IndirectImmediateExecutor, LockFreeStack, LockLocalVar, MVar, Map, Maybe, MultipleAssignmentError, MultipleErrors, Promise, ReadWriteLock, ReentrantReadWriteLock, SafeTaskExecutor, ScheduledTask, Semaphore, SerializedExecution, SerializedExecutionDelegator, Set, SimpleExecutorService, SingleThreadExecutor, TVar, ThreadLocalVar, ThreadPoolExecutor, TimerSet, TimerTask, Tuple

Constant Summary collapse

Error =
Class.new(StandardError)
ConfigurationError =

Raised when errors occur during configuration.

Class.new(Error)
CancelledOperationError =

Raised when an asynchronous operation is cancelled before execution.

Class.new(Error)
LifecycleError =

Raised when a lifecycle method (such as ‘stop`) is called in an improper sequence or when the object is in an inappropriate state.

Class.new(Error)
ImmutabilityError =

Raised when an attempt is made to violate an immutability guarantee.

Class.new(Error)
IllegalOperationError =

Raised when an operation is attempted which is not legal given the receiver’s current state

Class.new(Error)
InitializationError =

Raised when an object’s methods are called when it has not been properly initialized.

Class.new(Error)
MaxRestartFrequencyError =

Raised when an object with a start/stop lifecycle has been started an excessive number of times. Often used in conjunction with a restart policy or strategy.

Class.new(Error)
RejectedExecutionError =

Raised by an ‘Executor` when it is unable to process a given task, possibly because of a reject policy or other internal error.

Class.new(Error)
ResourceLimitError =

Raised when any finite resource, such as a lock counter, exceeds its maximum limit/threshold.

Class.new(Error)
TimeoutError =

Raised when an operation times out.

Class.new(Error)
PromiseExecutionError =
Class.new(StandardError)
VERSION =
'1.3.4'
NULL_LOGGER =

Suppresses all output when used for logging.

lambda { |level, progname, message = nil, &block| }

Class Method Summary collapse

Instance Method Summary collapse

Class Method Details

.abort_transactionObject

Abort a currently running transaction - see ‘Concurrent::atomically`.



139
140
141
# File 'lib/concurrent-ruby/concurrent/tvar.rb', line 139

def abort_transaction
  raise Transaction::AbortError.new
end

.atomicallyObject

Run a block that reads and writes ‘TVar`s as a single atomic transaction. With respect to the value of `TVar` objects, the transaction is atomic, in that it either happens or it does not, consistent, in that the `TVar` objects involved will never enter an illegal state, and isolated, in that transactions never interfere with each other. You may recognise these properties from database transactions.

There are some very important and unusual semantics that you must be aware of:

  • Most importantly, the block that you pass to atomically may be executed

    more than once. In most cases your code should be free of
    side-effects, except for via TVar.
    
  • If an exception escapes an atomically block it will abort the transaction.

  • It is undefined behaviour to use callcc or Fiber with atomically.

  • If you create a new thread within an atomically, it will not be part of

    the transaction. Creating a thread counts as a side-effect.
    

Transactions within transactions are flattened to a single transaction.

Examples:

a = new TVar(100_000)
b = new TVar(100)

Concurrent::atomically do
  a.value -= 10
  b.value += 10
end

Raises:

  • (ArgumentError)


82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# File 'lib/concurrent-ruby/concurrent/tvar.rb', line 82

def atomically
  raise ArgumentError.new('no block given') unless block_given?

  # Get the current transaction

  transaction = Transaction::current

  # Are we not already in a transaction (not nested)?

  if transaction.nil?
    # New transaction

    begin
      # Retry loop

      loop do

        # Create a new transaction

        transaction = Transaction.new
        Transaction::current = transaction

        # Run the block, aborting on exceptions

        begin
          result = yield
        rescue Transaction::AbortError => e
          transaction.abort
          result = Transaction::ABORTED
        rescue Transaction::LeaveError => e
          transaction.abort
          break result
        rescue => e
          transaction.abort
          raise e
        end
        # If we can commit, break out of the loop

        if result != Transaction::ABORTED
          if transaction.commit
            break result
          end
        end
      end
    ensure
      # Clear the current transaction

      Transaction::current = nil
    end
  else
    # Nested transaction - flatten it and just run the block

    yield
  end
end

.available_processor_countFloat

Number of processors cores available for process scheduling. This method takes in account the CPU quota if the process is inside a cgroup with a dedicated CPU quota (typically Docker). Otherwise it returns the same value as #processor_count but as a Float.

For performance reasons the calculated value will be memoized on the first call.

Returns:

  • (Float)

    number of available processors



194
195
196
# File 'lib/concurrent-ruby/concurrent/utility/processor_counter.rb', line 194

def self.available_processor_count
  processor_counter.available_processor_count
end

.call_dataflow(method, executor, *inputs, &block) ⇒ Object

Raises:

  • (ArgumentError)


56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# File 'lib/concurrent-ruby/concurrent/dataflow.rb', line 56

def call_dataflow(method, executor, *inputs, &block)
  raise ArgumentError.new('an executor must be provided') if executor.nil?
  raise ArgumentError.new('no block given') unless block_given?
  unless inputs.all? { |input| input.is_a? IVar }
    raise ArgumentError.new("Not all dependencies are IVars.\nDependencies: #{ inputs.inspect }")
  end

  result = Future.new(executor: executor) do
    values = inputs.map { |input| input.send(method) }
    block.call(*values)
  end

  if inputs.empty?
    result.execute
  else
    counter = DependencyCounter.new(inputs.size) { result.execute }

    inputs.each do |input|
      input.add_observer counter
    end
  end

  result
end

.cpu_quotanil, Float

The maximum number of processors cores available for process scheduling. Returns ‘nil` if there is no enforced limit, or a `Float` if the process is inside a cgroup with a dedicated CPU quota (typically Docker).

Note that nothing prevents setting a CPU quota higher than the actual number of cores on the system.

For performance reasons the calculated value will be memoized on the first call.

Returns:

  • (nil, Float)

    Maximum number of available processors as set by a cgroup CPU quota, or nil if none set



209
210
211
# File 'lib/concurrent-ruby/concurrent/utility/processor_counter.rb', line 209

def self.cpu_quota
  processor_counter.cpu_quota
end

.cpu_sharesFloat?

The CPU shares requested by the process. For performance reasons the calculated value will be memoized on the first call.

Returns:

  • (Float, nil)

    CPU shares requested by the process, or nil if not set



217
218
219
# File 'lib/concurrent-ruby/concurrent/utility/processor_counter.rb', line 217

def self.cpu_shares
  processor_counter.cpu_shares
end

.create_simple_logger(level = Logger::FATAL, output = $stderr) ⇒ Logger

Returns Logger with provided level and output.

Returns:

  • (Logger)

    Logger with provided level and output.



37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# File 'lib/concurrent-ruby/concurrent/concern/logging.rb', line 37

def self.create_simple_logger(level = Logger::FATAL, output = $stderr)
  # TODO (pitr-ch 24-Dec-2016): figure out why it had to be replaced, stdlogger was deadlocking
  lambda do |severity, progname, message = nil, &block|
    return false if severity < level

    message           = block ? block.call : message
    formatted_message = case message
                        when String
                          message
                        when Exception
                          format "%s (%s)\n%s",
                                 message.message, message.class, (message.backtrace || []).join("\n")
                        else
                          message.inspect
                        end

    output.print format "[%s] %5s -- %s: %s\n",
                        Time.now.strftime('%Y-%m-%d %H:%M:%S.%L'),
                        Logger::SEV_LABEL[severity],
                        progname,
                        formatted_message
    true
  end
end

.create_stdlib_logger(level = Logger::FATAL, output = $stderr) ⇒ Logger

Deprecated.

Returns Logger with provided level and output.

Returns:

  • (Logger)

    Logger with provided level and output.



69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# File 'lib/concurrent-ruby/concurrent/concern/logging.rb', line 69

def self.create_stdlib_logger(level = Logger::FATAL, output = $stderr)
  logger           = Logger.new(output)
  logger.level     = level
  logger.formatter = lambda do |severity, datetime, progname, msg|
    formatted_message = case msg
                        when String
                          msg
                        when Exception
                          format "%s (%s)\n%s",
                                 msg.message, msg.class, (msg.backtrace || []).join("\n")
                        else
                          msg.inspect
                        end
    format "[%s] %5s -- %s: %s\n",
           datetime.strftime('%Y-%m-%d %H:%M:%S.%L'),
           severity,
           progname,
           formatted_message
  end

  lambda do |loglevel, progname, message = nil, &block|
    logger.add loglevel, message, progname, &block
  end
end

.dataflow(*inputs) {|inputs| ... } ⇒ Object

Dataflow allows you to create a task that will be scheduled when all of its data dependencies are available.

Parameters:

  • inputs (Future)

    zero or more ‘Future` operations that this dataflow depends upon

Yields:

  • The operation to perform once all the dependencies are met

Yield Parameters:

  • inputs (Future)

    each of the ‘Future` inputs to the dataflow

Yield Returns:

  • (Object)

    the result of the block operation

Returns:

  • (Object)

    the result of all the operations

Raises:

  • (ArgumentError)

    if no block is given

  • (ArgumentError)

    if any of the inputs are not ‘IVar`s



34
35
36
# File 'lib/concurrent-ruby/concurrent/dataflow.rb', line 34

def dataflow(*inputs, &block)
  dataflow_with(Concurrent.global_io_executor, *inputs, &block)
end

.dataflow!(*inputs, &block) ⇒ Object



44
45
46
# File 'lib/concurrent-ruby/concurrent/dataflow.rb', line 44

def dataflow!(*inputs, &block)
  dataflow_with!(Concurrent.global_io_executor, *inputs, &block)
end

.dataflow_with(executor, *inputs, &block) ⇒ Object



39
40
41
# File 'lib/concurrent-ruby/concurrent/dataflow.rb', line 39

def dataflow_with(executor, *inputs, &block)
  call_dataflow(:value, executor, *inputs, &block)
end

.dataflow_with!(executor, *inputs, &block) ⇒ Object



49
50
51
# File 'lib/concurrent-ruby/concurrent/dataflow.rb', line 49

def dataflow_with!(executor, *inputs, &block)
  call_dataflow(:value!, executor, *inputs, &block)
end

.disable_at_exit_handlers!Object

Deprecated.

Has no effect since it is no longer needed, see github.com/ruby-concurrency/concurrent-ruby/pull/841.

Note:

this option should be needed only because of ‘at_exit` ordering issues which may arise when running some of the testing frameworks. E.g. Minitest’s test-suite runs itself in ‘at_exit` callback which executes after the pools are already terminated. Then auto termination needs to be disabled and called manually after test-suite ends.

Note:

This method should never be called from within a gem. It should only be used from within the main application and even then it should be used only when necessary.

Disables AtExit handlers including pool auto-termination handlers. When disabled it will be the application programmer’s responsibility to ensure that the handlers are shutdown properly prior to application exit by calling ‘AtExit.run` method.



48
49
50
# File 'lib/concurrent-ruby/concurrent/configuration.rb', line 48

def self.disable_at_exit_handlers!
  deprecated "Method #disable_at_exit_handlers! has no effect since it is no longer needed, see https://github.com/ruby-concurrency/concurrent-ruby/pull/841."
end

.executor(executor_identifier) ⇒ Executor

General access point to global executors.

Parameters:

Returns:

  • (Executor)


83
84
85
# File 'lib/concurrent-ruby/concurrent/configuration.rb', line 83

def self.executor(executor_identifier)
  Options.executor(executor_identifier)
end

.global_fast_executorThreadPoolExecutor

Global thread pool optimized for short, fast operations.

Returns:



55
56
57
# File 'lib/concurrent-ruby/concurrent/configuration.rb', line 55

def self.global_fast_executor
  GLOBAL_FAST_EXECUTOR.value!
end

.global_immediate_executorObject



66
67
68
# File 'lib/concurrent-ruby/concurrent/configuration.rb', line 66

def self.global_immediate_executor
  GLOBAL_IMMEDIATE_EXECUTOR
end

.global_io_executorThreadPoolExecutor

Global thread pool optimized for long, blocking (IO) tasks.

Returns:



62
63
64
# File 'lib/concurrent-ruby/concurrent/configuration.rb', line 62

def self.global_io_executor
  GLOBAL_IO_EXECUTOR.value!
end

.global_loggerObject



109
110
111
# File 'lib/concurrent-ruby/concurrent/concern/logging.rb', line 109

def self.global_logger
  GLOBAL_LOGGER.value
end

.global_logger=(value) ⇒ Object



113
114
115
# File 'lib/concurrent-ruby/concurrent/concern/logging.rb', line 113

def self.global_logger=(value)
  GLOBAL_LOGGER.value = value
end

.global_timer_setConcurrent::TimerSet

Global thread pool user for global timers.

Returns:



73
74
75
# File 'lib/concurrent-ruby/concurrent/configuration.rb', line 73

def self.global_timer_set
  GLOBAL_TIMER_SET.value!
end

.leave_transactionObject

Leave a transaction without committing or aborting - see ‘Concurrent::atomically`.



144
145
146
# File 'lib/concurrent-ruby/concurrent/tvar.rb', line 144

def leave_transaction
  raise Transaction::LeaveError.new
end

.monotonic_time(unit = :float_second) ⇒ Float

Note:

Time calculations on all platforms and languages are sensitive to changes to the system clock. To alleviate the potential problems associated with changing the system clock while an application is running, most modern operating systems provide a monotonic clock that operates independently of the system clock. A monotonic clock cannot be used to determine human-friendly clock times. A monotonic clock is used exclusively for calculating time intervals. Not all Ruby platforms provide access to an operating system monotonic clock. On these platforms a pure-Ruby monotonic clock will be used as a fallback. An operating system monotonic clock is both faster and more reliable than the pure-Ruby implementation. The pure-Ruby implementation should be fast and reliable enough for most non-realtime operations. At this time the common Ruby platforms that provide access to an operating system monotonic clock are MRI 2.1 and above and JRuby (all versions).

Returns the current time as tracked by the application monotonic clock.

Parameters:

  • unit (Symbol) (defaults to: :float_second)

    the time unit to be returned, can be either :float_second, :float_millisecond, :float_microsecond, :second, :millisecond, :microsecond, or :nanosecond default to :float_second.

Returns:

  • (Float)

    The current monotonic time since some unspecified starting point

See Also:



15
16
17
# File 'lib/concurrent-ruby/concurrent/utility/monotonic_time.rb', line 15

def monotonic_time(unit = :float_second)
  Process.clock_gettime(Process::CLOCK_MONOTONIC, unit)
end

.new_fast_executor(opts = {}) ⇒ Object



87
88
89
90
91
92
93
94
95
96
# File 'lib/concurrent-ruby/concurrent/configuration.rb', line 87

def self.new_fast_executor(opts = {})
  FixedThreadPool.new(
      [2, Concurrent.processor_count].max,
      auto_terminate:  opts.fetch(:auto_terminate, true),
      idletime:        60, # 1 minute
      max_queue:       0, # unlimited
      fallback_policy: :abort, # shouldn't matter -- 0 max queue
      name:            "fast"
  )
end

.new_io_executor(opts = {}) ⇒ Object



98
99
100
101
102
103
104
# File 'lib/concurrent-ruby/concurrent/configuration.rb', line 98

def self.new_io_executor(opts = {})
  CachedThreadPool.new(
      auto_terminate:  opts.fetch(:auto_terminate, true),
      fallback_policy: :abort, # shouldn't matter -- 0 max queue
      name:            "io"
  )
end

.physical_processor_countInteger

Number of physical processor cores on the current system. For performance reasons the calculated value will be memoized on the first call.

On Windows the Win32 API will be queried for the ‘NumberOfCores from Win32_Processor`. This will return the total number “of cores for the current instance of the processor.” On Unix-like operating systems either the `hwprefs` or `sysctl` utility will be called in a subshell and the returned value will be used. In the rare case where none of these methods work or an exception is raised the function will simply return 1.



181
182
183
# File 'lib/concurrent-ruby/concurrent/utility/processor_counter.rb', line 181

def self.physical_processor_count
  processor_counter.physical_processor_count
end

.processor_countInteger

Number of processors seen by the OS and used for process scheduling. For performance reasons the calculated value will be memoized on the first call.

When running under JRuby the Java runtime call ‘java.lang.Runtime.getRuntime.availableProcessors` will be used. According to the Java documentation this “value may change during a particular invocation of the virtual machine… [applications] should therefore occasionally poll this property.” We still memoize this value once under JRuby.

Otherwise Ruby’s Etc.nprocessors will be used.

Returns:

  • (Integer)

    number of processors seen by the OS or Java runtime

See Also:



160
161
162
# File 'lib/concurrent-ruby/concurrent/utility/processor_counter.rb', line 160

def self.processor_count
  processor_counter.processor_count
end

.use_simple_logger(level = Logger::FATAL, output = $stderr) ⇒ Object

Use logger created by #create_simple_logger to log concurrent-ruby messages.



63
64
65
# File 'lib/concurrent-ruby/concurrent/concern/logging.rb', line 63

def self.use_simple_logger(level = Logger::FATAL, output = $stderr)
  Concurrent.global_logger = create_simple_logger level, output
end

.use_stdlib_logger(level = Logger::FATAL, output = $stderr) ⇒ Object

Deprecated.

Use logger created by #create_stdlib_logger to log concurrent-ruby messages.



96
97
98
# File 'lib/concurrent-ruby/concurrent/concern/logging.rb', line 96

def self.use_stdlib_logger(level = Logger::FATAL, output = $stderr)
  Concurrent.global_logger = create_stdlib_logger level, output
end

Instance Method Details

#exchange(value, timeout = nil) ⇒ Object

Waits for another thread to arrive at this exchange point (unless the current thread is interrupted), and then transfers the given object to it, receiving its object in return. The timeout value indicates the approximate number of seconds the method should block while waiting for the exchange. When the timeout value is ‘nil` the method will block indefinitely.

In some edge cases when a ‘timeout` is given a return value of `nil` may be ambiguous. Specifically, if `nil` is a valid value in the exchange it will be impossible to tell whether `nil` is the actual return value or if it signifies timeout. When `nil` is a valid value in the exchange consider using #exchange! or #try_exchange instead.

Parameters:

  • value (Object)

    the value to exchange with another thread

  • timeout (Numeric, nil) (defaults to: nil)

    in seconds, ‘nil` blocks indefinitely

Returns:

  • (Object)

    the value exchanged by the other thread or ‘nil` on timeout



# File 'lib/concurrent-ruby/concurrent/exchanger.rb', line 341

#exchange!(value, timeout = nil) ⇒ Object

Waits for another thread to arrive at this exchange point (unless the current thread is interrupted), and then transfers the given object to it, receiving its object in return. The timeout value indicates the approximate number of seconds the method should block while waiting for the exchange. When the timeout value is ‘nil` the method will block indefinitely.

On timeout a TimeoutError exception will be raised.

Parameters:

  • value (Object)

    the value to exchange with another thread

  • timeout (Numeric, nil) (defaults to: nil)

    in seconds, ‘nil` blocks indefinitely

Returns:

  • (Object)

    the value exchanged by the other thread

Raises:



# File 'lib/concurrent-ruby/concurrent/exchanger.rb', line 345

#initialize(opts = {}) ⇒ Object

Create a new thread pool.

Options Hash (opts):

  • :fallback_policy (Symbol) — default: :discard

    the policy for handling new tasks that are received when the queue size has reached ‘max_queue` or the executor has shut down

Raises:

  • (ArgumentError)

    if ‘:fallback_policy` is not one of the values specified in `FALLBACK_POLICIES`

See Also:



# File 'lib/concurrent-ruby/concurrent/exchanger.rb', line 338

#try_exchange(value, timeout = nil) ⇒ Concurrent::Maybe

Waits for another thread to arrive at this exchange point (unless the current thread is interrupted), and then transfers the given object to it, receiving its object in return. The timeout value indicates the approximate number of seconds the method should block while waiting for the exchange. When the timeout value is ‘nil` the method will block indefinitely.

The return value will be a Maybe set to ‘Just` on success or `Nothing` on timeout.

Examples:


exchanger = Concurrent::Exchanger.new

result = exchanger.exchange(:foo, 0.5)

if result.just?
  puts result.value #=> :bar
else
  puts 'timeout'
end

Parameters:

  • value (Object)

    the value to exchange with another thread

  • timeout (Numeric, nil) (defaults to: nil)

    in seconds, ‘nil` blocks indefinitely

Returns:

  • (Concurrent::Maybe)

    on success a ‘Just` maybe will be returned with the item exchanged by the other thread as `#value`; on timeout a `Nothing` maybe will be returned with TimeoutError as `#reason`



# File 'lib/concurrent-ruby/concurrent/exchanger.rb', line 349