Class: Cmfrec::Recommender
- Inherits:
-
Object
- Object
- Cmfrec::Recommender
- Defined in:
- lib/cmfrec/recommender.rb
Instance Attribute Summary collapse
-
#global_mean ⇒ Object
readonly
Returns the value of attribute global_mean.
Class Method Summary collapse
Instance Method Summary collapse
- #fit(train_set, user_info: nil, item_info: nil) ⇒ Object
-
#initialize(factors: 8, epochs: 10, verbose: true, user_bias: true, item_bias: true, add_implicit_features: false) ⇒ Recommender
constructor
A new instance of Recommender.
- #item_bias(item_id = nil) ⇒ Object
- #item_factors(item_id = nil) ⇒ Object
- #item_ids ⇒ Object
- #new_user_recs(data, count: 5, user_info: nil, item_ids: nil) ⇒ Object
- #predict(data) ⇒ Object
- #similar_items(item_id, count: 5) ⇒ Object (also: #item_recs)
- #similar_users(user_id, count: 5) ⇒ Object
- #to_json ⇒ Object
- #user_bias(user_id = nil) ⇒ Object
- #user_factors(user_id = nil) ⇒ Object
- #user_ids ⇒ Object
- #user_recs(user_id, count: 5, item_ids: nil) ⇒ Object
Constructor Details
#initialize(factors: 8, epochs: 10, verbose: true, user_bias: true, item_bias: true, add_implicit_features: false) ⇒ Recommender
Returns a new instance of Recommender.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
# File 'lib/cmfrec/recommender.rb', line 5 def initialize(factors: 8, epochs: 10, verbose: true, user_bias: true, item_bias: true, add_implicit_features: false) set_params( k: factors, niter: epochs, verbose: verbose, user_bias: user_bias, item_bias: item_bias, add_implicit_features: add_implicit_features ) @fit = false @user_map = {} @item_map = {} @user_info_map = {} @item_info_map = {} end |
Instance Attribute Details
#global_mean ⇒ Object (readonly)
Returns the value of attribute global_mean.
3 4 5 |
# File 'lib/cmfrec/recommender.rb', line 3 def global_mean @global_mean end |
Class Method Details
.load_json(json) ⇒ Object
304 305 306 307 308 309 310 311 312 |
# File 'lib/cmfrec/recommender.rb', line 304 def self.load_json(json) require "json" obj = JSON.parse(json) recommender = new recommender.send(:json_load, obj) recommender end |
Instance Method Details
#fit(train_set, user_info: nil, item_info: nil) ⇒ Object
22 23 24 25 |
# File 'lib/cmfrec/recommender.rb', line 22 def fit(train_set, user_info: nil, item_info: nil) reset partial_fit(train_set, user_info: user_info, item_info: item_info) end |
#item_bias(item_id = nil) ⇒ Object
237 238 239 |
# File 'lib/cmfrec/recommender.rb', line 237 def item_bias(item_id = nil) read_bias(@bias_b, item_id, @item_map) if @bias_b end |
#item_factors(item_id = nil) ⇒ Object
229 230 231 |
# File 'lib/cmfrec/recommender.rb', line 229 def item_factors(item_id = nil) read_factors(@b, [@n, @n_i].max, @k_item + @k + @k_main, item_id, @item_map) end |
#item_ids ⇒ Object
221 222 223 |
# File 'lib/cmfrec/recommender.rb', line 221 def item_ids @item_map.keys end |
#new_user_recs(data, count: 5, user_info: nil, item_ids: nil) ⇒ Object
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
# File 'lib/cmfrec/recommender.rb', line 81 def new_user_recs(data, count: 5, user_info: nil, item_ids: nil) check_fit data = to_dataset(data) user_info = to_dataset(user_info) if user_info # remove unknown items data, unknown_data = data.partition { |d| @item_map[d[:item_id]] } if unknown_data.any? # TODO warn for unknown items? # warn "[cmfrec] Unknown items: #{unknown_data.map { |d| d[:item_id] }.join(", ")}" end rated_ids = data.map { |d| @item_map[d[:item_id]] } nnz = data.size u_vec_sp = [] u_vec_x_col = [] if user_info user_info.each do |k, v| next if k == :user_id uc = @user_info_map[k] raise "Bad key: #{k}" unless uc u_vec_x_col << uc u_vec_sp << v end end p_ = @user_info_map.size nnz_u_vec = u_vec_sp.size u_vec_x_col = int_ptr(u_vec_x_col) u_vec_sp = real_ptr(u_vec_sp) u_vec = nil u_bin_vec = nil pbin = 0 weight = nil lam_unique = nil l1_lam_unique = nil n_max = @n if data.any? if @implicit = data.map { |d| d[:value] || 1 } else = data.map { |d| d[:rating] } () end xa = real_ptr() x_col = int_ptr(rated_ids) else xa = nil x_col = nil end xa_dense = nil rated = rated_ids.uniq prep = prepare_top_n(count: count, rated: rated, item_ids: item_ids) return [] if prep.empty? include_ix, n_include, exclude_ix, n_exclude, outp_ix, outp_score, count = prep if @implicit args = [ @n, u_vec, p_, u_vec_sp, u_vec_x_col, nnz_u_vec, @na_as_zero_user, @nonneg, @u_colmeans, @b, @c, xa, x_col, nnz, @k, @k_user, @k_item, @k_main, @lambda_, @l1_lambda, @alpha, @w_main, @w_user, @w_main_multiplier, @apply_log_transf, nil, #BeTBe, nil, #BtB, nil, #BeTBeChol, nil, #CtUbias, include_ix, n_include, exclude_ix, n_exclude, outp_ix, outp_score, count, @nthreads ] check_status FFI.topN_new_collective_implicit(*fiddle_args(args)) else cb = nil scaling_bias_a = 0 args = [ @user_bias, u_vec, p_, u_vec_sp, u_vec_x_col, nnz_u_vec, u_bin_vec, pbin, @na_as_zero_user, @na_as_zero, @nonneg, @c, cb, @global_mean, @bias_b, @u_colmeans, xa, x_col, nnz, xa_dense, @n, weight, @b, @bi, @add_implicit_features, @k, @k_user, @k_item, @k_main, @lambda_, lam_unique, @l1_lambda, l1_lam_unique, @scale_lam, @scale_lam_sideinfo, @scale_bias_const, scaling_bias_a, @w_main, @w_user, @w_implicit, n_max, @include_all_x, nil, #BtB, nil, #TransBtBinvBt, nil, #BtXbias, nil, #BeTBeChol, nil, #BiTBi, nil, #CtCw, nil, #TransCtCinvCt, nil, #CtUbias, nil, #B_plus_bias, include_ix, n_include, exclude_ix, n_exclude, outp_ix, outp_score, count, @nthreads ] check_status FFI.topN_new_collective_explicit(*fiddle_args(args)) end top_n_output(outp_ix, outp_score) end |
#predict(data) ⇒ Object
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
# File 'lib/cmfrec/recommender.rb', line 27 def predict(data) check_fit data = to_dataset(data) u = data.map { |v| @user_map[v[:user_id]] || @user_map.size } i = data.map { |v| @item_map[v[:item_id]] || @item_map.size } row = int_ptr(u) col = int_ptr(i) n_predict = data.size predicted = Fiddle::Pointer.malloc(n_predict * Fiddle::SIZEOF_DOUBLE) if @implicit check_status FFI.predict_X_old_collective_implicit( row, col, predicted, n_predict, @a, @b, @k, @k_user, @k_item, @k_main, @m, @n, @nthreads ) else check_status FFI.predict_X_old_collective_explicit( row, col, predicted, n_predict, @a, @bias_a, @b, @bias_b, @global_mean, @k, @k_user, @k_item, @k_main, @m, @n, @nthreads ) end predictions = real_array(predicted) predictions.map! { |v| v.nan? ? @global_mean : v } if @implicit predictions end |
#similar_items(item_id, count: 5) ⇒ Object Also known as: item_recs
241 242 243 244 |
# File 'lib/cmfrec/recommender.rb', line 241 def similar_items(item_id, count: 5) check_fit similar(item_id, @item_map, item_factors, count, item_index) end |
#similar_users(user_id, count: 5) ⇒ Object
247 248 249 250 |
# File 'lib/cmfrec/recommender.rb', line 247 def similar_users(user_id, count: 5) check_fit similar(user_id, @user_map, user_factors, count, user_index) end |
#to_json ⇒ Object
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# File 'lib/cmfrec/recommender.rb', line 252 def to_json require "base64" require "json" obj = { implicit: @implicit } # options obj[:factors] = @k obj[:epochs] = @niter obj[:verbose] = @verbose # factors obj[:user_ids] = @user_map.keys obj[:item_ids] = @item_map.keys obj[:rated] = @user_map.map { |_, u| (@rated[u] || {}).keys } obj[:user_factors] = json_dump_ptr(@a) obj[:item_factors] = json_dump_ptr(@b) # bias obj[:user_bias] = json_dump_ptr(@bias_a) obj[:item_bias] = json_dump_ptr(@bias_b) # mean obj[:global_mean] = @global_mean unless (@user_info_map.keys + @item_info_map.keys).all? { |v| v.is_a?(Symbol) } raise "Side info keys must be symbols to save" end # side info obj[:user_info_ids] = @user_info_map.keys obj[:item_info_ids] = @item_info_map.keys obj[:user_info_factors] = json_dump_ptr(@c) obj[:item_info_factors] = json_dump_ptr(@d) # implicit features obj[:add_implicit_features] = @add_implicit_features obj[:user_factors_implicit] = json_dump_ptr(@ai) obj[:item_factors_implicit] = json_dump_ptr(@bi) unless @implicit obj[:min_rating] = @min_rating obj[:max_rating] = @max_rating end obj[:user_means] = json_dump_ptr(@u_colmeans) JSON.generate(obj) end |
#user_bias(user_id = nil) ⇒ Object
233 234 235 |
# File 'lib/cmfrec/recommender.rb', line 233 def user_bias(user_id = nil) read_bias(@bias_a, user_id, @user_map) if @bias_a end |
#user_factors(user_id = nil) ⇒ Object
225 226 227 |
# File 'lib/cmfrec/recommender.rb', line 225 def user_factors(user_id = nil) read_factors(@a, [@m, @m_u].max, @k_user + @k + @k_main, user_id, @user_map) end |
#user_ids ⇒ Object
217 218 219 |
# File 'lib/cmfrec/recommender.rb', line 217 def user_ids @user_map.keys end |
#user_recs(user_id, count: 5, item_ids: nil) ⇒ Object
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
# File 'lib/cmfrec/recommender.rb', line 65 def user_recs(user_id, count: 5, item_ids: nil) check_fit user = @user_map[user_id] if user a_vec = @a[user * @k * Fiddle::SIZEOF_DOUBLE, @k * Fiddle::SIZEOF_DOUBLE] a_bias = @bias_a ? @bias_a[user * Fiddle::SIZEOF_DOUBLE, Fiddle::SIZEOF_DOUBLE].unpack1("d") : 0 # @rated[user] will be nil for recommenders saved before 0.1.5 top_n(a_vec: a_vec, a_bias: a_bias, count: count, rated: (@rated[user] || {}).keys, item_ids: item_ids, row_index: user) else # no items if user is unknown # TODO maybe most popular items [] end end |