Class: Aws::SageMaker::Types::HyperParameterTuningJobConfig

Inherits:
Struct
  • Object
show all
Includes:
Aws::Structure
Defined in:
lib/aws-sdk-sagemaker/types.rb

Overview

Configures a hyperparameter tuning job.

Constant Summary collapse

SENSITIVE =
[]

Instance Attribute Summary collapse

Instance Attribute Details

#hyper_parameter_tuning_job_objectiveTypes::HyperParameterTuningJobObjective

The [HyperParameterTuningJobObjective] specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.

[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobObjective.html



23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
# File 'lib/aws-sdk-sagemaker/types.rb', line 23342

class HyperParameterTuningJobConfig < Struct.new(
  :strategy,
  :strategy_config,
  :hyper_parameter_tuning_job_objective,
  :resource_limits,
  :parameter_ranges,
  :training_job_early_stopping_type,
  :tuning_job_completion_criteria,
  :random_seed)
  SENSITIVE = []
  include Aws::Structure
end

#parameter_rangesTypes::ParameterRanges

The [ParameterRanges] object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.

[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_ParameterRanges.html



23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
# File 'lib/aws-sdk-sagemaker/types.rb', line 23342

class HyperParameterTuningJobConfig < Struct.new(
  :strategy,
  :strategy_config,
  :hyper_parameter_tuning_job_objective,
  :resource_limits,
  :parameter_ranges,
  :training_job_early_stopping_type,
  :tuning_job_completion_criteria,
  :random_seed)
  SENSITIVE = []
  include Aws::Structure
end

#random_seedInteger

A value used to initialize a pseudo-random number generator. Setting a random seed and using the same seed later for the same tuning job will allow hyperparameter optimization to find more a consistent hyperparameter configuration between the two runs.

Returns:

  • (Integer)


23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
# File 'lib/aws-sdk-sagemaker/types.rb', line 23342

class HyperParameterTuningJobConfig < Struct.new(
  :strategy,
  :strategy_config,
  :hyper_parameter_tuning_job_objective,
  :resource_limits,
  :parameter_ranges,
  :training_job_early_stopping_type,
  :tuning_job_completion_criteria,
  :random_seed)
  SENSITIVE = []
  include Aws::Structure
end

#resource_limitsTypes::ResourceLimits

The [ResourceLimits] object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.

[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html



23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
# File 'lib/aws-sdk-sagemaker/types.rb', line 23342

class HyperParameterTuningJobConfig < Struct.new(
  :strategy,
  :strategy_config,
  :hyper_parameter_tuning_job_objective,
  :resource_limits,
  :parameter_ranges,
  :training_job_early_stopping_type,
  :tuning_job_completion_criteria,
  :random_seed)
  SENSITIVE = []
  include Aws::Structure
end

#strategyString

Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. For information about search strategies, see [How Hyperparameter Tuning Works].

[1]: docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html

Returns:

  • (String)


23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
# File 'lib/aws-sdk-sagemaker/types.rb', line 23342

class HyperParameterTuningJobConfig < Struct.new(
  :strategy,
  :strategy_config,
  :hyper_parameter_tuning_job_objective,
  :resource_limits,
  :parameter_ranges,
  :training_job_early_stopping_type,
  :tuning_job_completion_criteria,
  :random_seed)
  SENSITIVE = []
  include Aws::Structure
end

#strategy_configTypes::HyperParameterTuningJobStrategyConfig

The configuration for the ‘Hyperband` optimization strategy. This parameter should be provided only if `Hyperband` is selected as the strategy for `HyperParameterTuningJobConfig`.



23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
# File 'lib/aws-sdk-sagemaker/types.rb', line 23342

class HyperParameterTuningJobConfig < Struct.new(
  :strategy,
  :strategy_config,
  :hyper_parameter_tuning_job_objective,
  :resource_limits,
  :parameter_ranges,
  :training_job_early_stopping_type,
  :tuning_job_completion_criteria,
  :random_seed)
  SENSITIVE = []
  include Aws::Structure
end

#training_job_early_stopping_typeString

Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. Because the ‘Hyperband` strategy has its own advanced internal early stopping mechanism, `TrainingJobEarlyStoppingType` must be `OFF` to use `Hyperband`. This parameter can take on one of the following values (the default value is `OFF`):

OFF

: Training jobs launched by the hyperparameter tuning job do not use

early stopping.

AUTO

: SageMaker stops training jobs launched by the hyperparameter

tuning job when they are unlikely to perform better than
previously completed training jobs. For more information, see
[Stop Training Jobs Early][1].

[1]: docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html

Returns:

  • (String)


23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
# File 'lib/aws-sdk-sagemaker/types.rb', line 23342

class HyperParameterTuningJobConfig < Struct.new(
  :strategy,
  :strategy_config,
  :hyper_parameter_tuning_job_objective,
  :resource_limits,
  :parameter_ranges,
  :training_job_early_stopping_type,
  :tuning_job_completion_criteria,
  :random_seed)
  SENSITIVE = []
  include Aws::Structure
end

#tuning_job_completion_criteriaTypes::TuningJobCompletionCriteria

The tuning job’s completion criteria.



23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
# File 'lib/aws-sdk-sagemaker/types.rb', line 23342

class HyperParameterTuningJobConfig < Struct.new(
  :strategy,
  :strategy_config,
  :hyper_parameter_tuning_job_objective,
  :resource_limits,
  :parameter_ranges,
  :training_job_early_stopping_type,
  :tuning_job_completion_criteria,
  :random_seed)
  SENSITIVE = []
  include Aws::Structure
end