Class: Aws::SageMaker::Types::HyperParameterTuningJobConfig
- Inherits:
-
Struct
- Object
- Struct
- Aws::SageMaker::Types::HyperParameterTuningJobConfig
- Includes:
- Aws::Structure
- Defined in:
- lib/aws-sdk-sagemaker/types.rb
Overview
Configures a hyperparameter tuning job.
Constant Summary collapse
- SENSITIVE =
[]
Instance Attribute Summary collapse
-
#hyper_parameter_tuning_job_objective ⇒ Types::HyperParameterTuningJobObjective
The [HyperParameterTuningJobObjective] specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.
-
#parameter_ranges ⇒ Types::ParameterRanges
The [ParameterRanges] object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.
-
#random_seed ⇒ Integer
A value used to initialize a pseudo-random number generator.
-
#resource_limits ⇒ Types::ResourceLimits
The [ResourceLimits] object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.
-
#strategy ⇒ String
Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches.
-
#strategy_config ⇒ Types::HyperParameterTuningJobStrategyConfig
The configuration for the ‘Hyperband` optimization strategy.
-
#training_job_early_stopping_type ⇒ String
Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job.
-
#tuning_job_completion_criteria ⇒ Types::TuningJobCompletionCriteria
The tuning job’s completion criteria.
Instance Attribute Details
#hyper_parameter_tuning_job_objective ⇒ Types::HyperParameterTuningJobObjective
The [HyperParameterTuningJobObjective] specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.
[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobObjective.html
23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 23226 class HyperParameterTuningJobConfig < Struct.new( :strategy, :strategy_config, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria, :random_seed) SENSITIVE = [] include Aws::Structure end |
#parameter_ranges ⇒ Types::ParameterRanges
The [ParameterRanges] object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.
[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_ParameterRanges.html
23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 23226 class HyperParameterTuningJobConfig < Struct.new( :strategy, :strategy_config, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria, :random_seed) SENSITIVE = [] include Aws::Structure end |
#random_seed ⇒ Integer
A value used to initialize a pseudo-random number generator. Setting a random seed and using the same seed later for the same tuning job will allow hyperparameter optimization to find more a consistent hyperparameter configuration between the two runs.
23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 23226 class HyperParameterTuningJobConfig < Struct.new( :strategy, :strategy_config, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria, :random_seed) SENSITIVE = [] include Aws::Structure end |
#resource_limits ⇒ Types::ResourceLimits
The [ResourceLimits] object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.
[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html
23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 23226 class HyperParameterTuningJobConfig < Struct.new( :strategy, :strategy_config, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria, :random_seed) SENSITIVE = [] include Aws::Structure end |
#strategy ⇒ String
Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. For information about search strategies, see [How Hyperparameter Tuning Works].
[1]: docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html
23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 23226 class HyperParameterTuningJobConfig < Struct.new( :strategy, :strategy_config, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria, :random_seed) SENSITIVE = [] include Aws::Structure end |
#strategy_config ⇒ Types::HyperParameterTuningJobStrategyConfig
The configuration for the ‘Hyperband` optimization strategy. This parameter should be provided only if `Hyperband` is selected as the strategy for `HyperParameterTuningJobConfig`.
23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 23226 class HyperParameterTuningJobConfig < Struct.new( :strategy, :strategy_config, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria, :random_seed) SENSITIVE = [] include Aws::Structure end |
#training_job_early_stopping_type ⇒ String
Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. Because the ‘Hyperband` strategy has its own advanced internal early stopping mechanism, `TrainingJobEarlyStoppingType` must be `OFF` to use `Hyperband`. This parameter can take on one of the following values (the default value is `OFF`):
OFF
: Training jobs launched by the hyperparameter tuning job do not use
early stopping.
AUTO
: SageMaker stops training jobs launched by the hyperparameter
tuning job when they are unlikely to perform better than
previously completed training jobs. For more information, see
[Stop Training Jobs Early][1].
[1]: docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html
23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 23226 class HyperParameterTuningJobConfig < Struct.new( :strategy, :strategy_config, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria, :random_seed) SENSITIVE = [] include Aws::Structure end |
#tuning_job_completion_criteria ⇒ Types::TuningJobCompletionCriteria
The tuning job’s completion criteria.
23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 23226 class HyperParameterTuningJobConfig < Struct.new( :strategy, :strategy_config, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria, :random_seed) SENSITIVE = [] include Aws::Structure end |