Class: Aws::SageMaker::Types::CreateTrainingJobRequest
- Inherits:
-
Struct
- Object
- Struct
- Aws::SageMaker::Types::CreateTrainingJobRequest
- Includes:
- Aws::Structure
- Defined in:
- lib/aws-sdk-sagemaker/types.rb
Overview
Constant Summary collapse
- SENSITIVE =
[]
Instance Attribute Summary collapse
-
#algorithm_specification ⇒ Types::AlgorithmSpecification
The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode.
-
#checkpoint_config ⇒ Types::CheckpointConfig
Contains information about the output location for managed spot training checkpoint data.
-
#debug_hook_config ⇒ Types::DebugHookConfig
Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths.
-
#debug_rule_configurations ⇒ Array<Types::DebugRuleConfiguration>
Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.
-
#enable_inter_container_traffic_encryption ⇒ Boolean
To encrypt all communications between ML compute instances in distributed training, choose ‘True`.
-
#enable_managed_spot_training ⇒ Boolean
To train models using managed spot training, choose ‘True`.
-
#enable_network_isolation ⇒ Boolean
Isolates the training container.
-
#environment ⇒ Hash<String,String>
The environment variables to set in the Docker container.
-
#experiment_config ⇒ Types::ExperimentConfig
Associates a SageMaker job as a trial component with an experiment and trial.
-
#hyper_parameters ⇒ Hash<String,String>
Algorithm-specific parameters that influence the quality of the model.
-
#infra_check_config ⇒ Types::InfraCheckConfig
Contains information about the infrastructure health check configuration for the training job.
-
#input_data_config ⇒ Array<Types::Channel>
An array of ‘Channel` objects.
-
#output_data_config ⇒ Types::OutputDataConfig
Specifies the path to the S3 location where you want to store model artifacts.
-
#profiler_config ⇒ Types::ProfilerConfig
Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.
-
#profiler_rule_configurations ⇒ Array<Types::ProfilerRuleConfiguration>
Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.
-
#remote_debug_config ⇒ Types::RemoteDebugConfig
Configuration for remote debugging.
-
#resource_config ⇒ Types::ResourceConfig
The resources, including the ML compute instances and ML storage volumes, to use for model training.
-
#retry_strategy ⇒ Types::RetryStrategy
The number of times to retry the job when the job fails due to an ‘InternalServerError`.
-
#role_arn ⇒ String
The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform tasks on your behalf.
-
#session_chaining_config ⇒ Types::SessionChainingConfig
Contains information about attribute-based access control (ABAC) for the training job.
-
#stopping_condition ⇒ Types::StoppingCondition
Specifies a limit to how long a model training job can run.
-
#tags ⇒ Array<Types::Tag>
An array of key-value pairs.
-
#tensor_board_output_config ⇒ Types::TensorBoardOutputConfig
Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.
-
#training_job_name ⇒ String
The name of the training job.
-
#vpc_config ⇒ Types::VpcConfig
A [VpcConfig] object that specifies the VPC that you want your training job to connect to.
Instance Attribute Details
#algorithm_specification ⇒ Types::AlgorithmSpecification
The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by SageMaker, see [Algorithms]. For information about providing your own algorithms, see [Using Your Own Algorithms with Amazon SageMaker].
[1]: docs.aws.amazon.com/sagemaker/latest/dg/algos.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#checkpoint_config ⇒ Types::CheckpointConfig
Contains information about the output location for managed spot training checkpoint data.
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#debug_hook_config ⇒ Types::DebugHookConfig
Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the ‘DebugHookConfig` parameter, see [Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job].
[1]: docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#debug_rule_configurations ⇒ Array<Types::DebugRuleConfiguration>
Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#enable_inter_container_traffic_encryption ⇒ Boolean
To encrypt all communications between ML compute instances in distributed training, choose ‘True`. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see [Protect Communications Between ML Compute Instances in a Distributed Training Job].
[1]: docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#enable_managed_spot_training ⇒ Boolean
To train models using managed spot training, choose ‘True`. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run.
The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#enable_network_isolation ⇒ Boolean
Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#environment ⇒ Hash<String,String>
The environment variables to set in the Docker container.
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#experiment_config ⇒ Types::ExperimentConfig
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
- CreateProcessingJob][1
- CreateTrainingJob][2
- CreateTransformJob][3
[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html [2]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html [3]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#hyper_parameters ⇒ Hash<String,String>
Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see [Algorithms].
You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the ‘Length Constraint`.
Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter field. If the use of security-sensitive credentials are detected, SageMaker will reject your training job request and return an exception error.
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#infra_check_config ⇒ Types::InfraCheckConfig
Contains information about the infrastructure health check configuration for the training job.
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#input_data_config ⇒ Array<Types::Channel>
An array of ‘Channel` objects. Each channel is a named input source. `InputDataConfig` describes the input data and its location.
Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, ‘training_data` and `validation_data`. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format.
Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded.
Your input must be in the same Amazon Web Services region as your training job.
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#output_data_config ⇒ Types::OutputDataConfig
Specifies the path to the S3 location where you want to store model artifacts. SageMaker creates subfolders for the artifacts.
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#profiler_config ⇒ Types::ProfilerConfig
Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#profiler_rule_configurations ⇒ Array<Types::ProfilerRuleConfiguration>
Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#remote_debug_config ⇒ Types::RemoteDebugConfig
Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see [Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging].
[1]: docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#resource_config ⇒ Types::ResourceConfig
The resources, including the ML compute instances and ML storage volumes, to use for model training.
ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want SageMaker to use the ML storage volume to store the training data, choose ‘File` as the `TrainingInputMode` in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#retry_strategy ⇒ Types::RetryStrategy
The number of times to retry the job when the job fails due to an ‘InternalServerError`.
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#role_arn ⇒ String
The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform tasks on your behalf.
During model training, SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see [SageMaker Roles].
<note markdown=“1”> To be able to pass this role to SageMaker, the caller of this API must have the ‘iam:PassRole` permission.
</note>
[1]: docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#session_chaining_config ⇒ Types::SessionChainingConfig
Contains information about attribute-based access control (ABAC) for the training job.
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#stopping_condition ⇒ Types::StoppingCondition
Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, SageMaker sends the algorithm the ‘SIGTERM` signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#tags ⇒ Array<Types::Tag>
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see [Tagging Amazon Web Services Resources].
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#tensor_board_output_config ⇒ Types::TensorBoardOutputConfig
Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#training_job_name ⇒ String
The name of the training job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |
#vpc_config ⇒ Types::VpcConfig
A [VpcConfig] object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see [Protect Training Jobs by Using an Amazon Virtual Private Cloud].
[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 9726 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config, :profiler_config, :profiler_rule_configurations, :environment, :retry_strategy, :remote_debug_config, :infra_check_config, :session_chaining_config) SENSITIVE = [] include Aws::Structure end |