Class: Aws::SageMaker::Types::CreateAutoMLJobV2Request

Inherits:
Struct
  • Object
show all
Includes:
Aws::Structure
Defined in:
lib/aws-sdk-sagemaker/types.rb

Overview

Constant Summary collapse

SENSITIVE =
[]

Instance Attribute Summary collapse

Instance Attribute Details

#auto_ml_compute_configTypes::AutoMLComputeConfig

Specifies the compute configuration for the AutoML job V2.



5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730

class CreateAutoMLJobV2Request < Struct.new(
  :auto_ml_job_name,
  :auto_ml_job_input_data_config,
  :output_data_config,
  :auto_ml_problem_type_config,
  :role_arn,
  :tags,
  :security_config,
  :auto_ml_job_objective,
  :model_deploy_config,
  :data_split_config,
  :auto_ml_compute_config)
  SENSITIVE = []
  include Aws::Structure
end

#auto_ml_job_input_data_configArray<Types::AutoMLJobChannel>

An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the

InputDataConfig][1

attribute in the ‘CreateAutoMLJob` input

parameters. The supported formats depend on the problem type:

  • For tabular problem types: ‘S3Prefix`, `ManifestFile`.

  • For image classification: ‘S3Prefix`, `ManifestFile`, `AugmentedManifestFile`.

  • For text classification: ‘S3Prefix`.

  • For time-series forecasting: ‘S3Prefix`.

  • For text generation (LLMs fine-tuning): ‘S3Prefix`.

[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig

Returns:



5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730

class CreateAutoMLJobV2Request < Struct.new(
  :auto_ml_job_name,
  :auto_ml_job_input_data_config,
  :output_data_config,
  :auto_ml_problem_type_config,
  :role_arn,
  :tags,
  :security_config,
  :auto_ml_job_objective,
  :model_deploy_config,
  :data_split_config,
  :auto_ml_compute_config)
  SENSITIVE = []
  include Aws::Structure
end

#auto_ml_job_nameString

Identifies an Autopilot job. The name must be unique to your account and is case insensitive.

Returns:

  • (String)


5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730

class CreateAutoMLJobV2Request < Struct.new(
  :auto_ml_job_name,
  :auto_ml_job_input_data_config,
  :output_data_config,
  :auto_ml_problem_type_config,
  :role_arn,
  :tags,
  :security_config,
  :auto_ml_job_objective,
  :model_deploy_config,
  :data_split_config,
  :auto_ml_compute_config)
  SENSITIVE = []
  include Aws::Structure
end

#auto_ml_job_objectiveTypes::AutoMLJobObjective

Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see [AutoMLJobObjective].

<note markdown=“1”> * For tabular problem types: You must either provide both the

`AutoMLJobObjective` and indicate the type of supervised learning
problem in `AutoMLProblemTypeConfig`
(`TabularJobConfig.ProblemType`), or none at all.
  • For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the ‘AutoMLJobObjective` field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see [Metrics for fine-tuning LLMs in Autopilot].

</note>

[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html



5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730

class CreateAutoMLJobV2Request < Struct.new(
  :auto_ml_job_name,
  :auto_ml_job_input_data_config,
  :output_data_config,
  :auto_ml_problem_type_config,
  :role_arn,
  :tags,
  :security_config,
  :auto_ml_job_objective,
  :model_deploy_config,
  :data_split_config,
  :auto_ml_compute_config)
  SENSITIVE = []
  include Aws::Structure
end

#auto_ml_problem_type_configTypes::AutoMLProblemTypeConfig

Defines the configuration settings of one of the supported problem types.



5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730

class CreateAutoMLJobV2Request < Struct.new(
  :auto_ml_job_name,
  :auto_ml_job_input_data_config,
  :output_data_config,
  :auto_ml_problem_type_config,
  :role_arn,
  :tags,
  :security_config,
  :auto_ml_job_objective,
  :model_deploy_config,
  :data_split_config,
  :auto_ml_compute_config)
  SENSITIVE = []
  include Aws::Structure
end

#data_split_configTypes::AutoMLDataSplitConfig

This structure specifies how to split the data into train and validation datasets.

The validation and training datasets must contain the same headers. For jobs created by calling ‘CreateAutoMLJob`, the validation dataset must be less than 2 GB in size.

<note markdown=“1”> This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.

</note>


5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730

class CreateAutoMLJobV2Request < Struct.new(
  :auto_ml_job_name,
  :auto_ml_job_input_data_config,
  :output_data_config,
  :auto_ml_problem_type_config,
  :role_arn,
  :tags,
  :security_config,
  :auto_ml_job_objective,
  :model_deploy_config,
  :data_split_config,
  :auto_ml_compute_config)
  SENSITIVE = []
  include Aws::Structure
end

#model_deploy_configTypes::ModelDeployConfig

Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.



5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730

class CreateAutoMLJobV2Request < Struct.new(
  :auto_ml_job_name,
  :auto_ml_job_input_data_config,
  :output_data_config,
  :auto_ml_problem_type_config,
  :role_arn,
  :tags,
  :security_config,
  :auto_ml_job_objective,
  :model_deploy_config,
  :data_split_config,
  :auto_ml_compute_config)
  SENSITIVE = []
  include Aws::Structure
end

#output_data_configTypes::AutoMLOutputDataConfig

Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.



5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730

class CreateAutoMLJobV2Request < Struct.new(
  :auto_ml_job_name,
  :auto_ml_job_input_data_config,
  :output_data_config,
  :auto_ml_problem_type_config,
  :role_arn,
  :tags,
  :security_config,
  :auto_ml_job_objective,
  :model_deploy_config,
  :data_split_config,
  :auto_ml_compute_config)
  SENSITIVE = []
  include Aws::Structure
end

#role_arnString

The ARN of the role that is used to access the data.

Returns:

  • (String)


5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730

class CreateAutoMLJobV2Request < Struct.new(
  :auto_ml_job_name,
  :auto_ml_job_input_data_config,
  :output_data_config,
  :auto_ml_problem_type_config,
  :role_arn,
  :tags,
  :security_config,
  :auto_ml_job_objective,
  :model_deploy_config,
  :data_split_config,
  :auto_ml_compute_config)
  SENSITIVE = []
  include Aws::Structure
end

#security_configTypes::AutoMLSecurityConfig

The security configuration for traffic encryption or Amazon VPC settings.



5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730

class CreateAutoMLJobV2Request < Struct.new(
  :auto_ml_job_name,
  :auto_ml_job_input_data_config,
  :output_data_config,
  :auto_ml_problem_type_config,
  :role_arn,
  :tags,
  :security_config,
  :auto_ml_job_objective,
  :model_deploy_config,
  :data_split_config,
  :auto_ml_compute_config)
  SENSITIVE = []
  include Aws::Structure
end

#tagsArray<Types::Tag>

An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see [Tagging Amazon Web ServicesResources]. Tag keys must be unique per resource.

[1]: docs.aws.amazon.com/general/latest/gr/aws_tagging.html

Returns:



5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730

class CreateAutoMLJobV2Request < Struct.new(
  :auto_ml_job_name,
  :auto_ml_job_input_data_config,
  :output_data_config,
  :auto_ml_problem_type_config,
  :role_arn,
  :tags,
  :security_config,
  :auto_ml_job_objective,
  :model_deploy_config,
  :data_split_config,
  :auto_ml_compute_config)
  SENSITIVE = []
  include Aws::Structure
end