Class: Aws::SageMaker::Types::CreateAutoMLJobV2Request
- Inherits:
-
Struct
- Object
- Struct
- Aws::SageMaker::Types::CreateAutoMLJobV2Request
- Includes:
- Aws::Structure
- Defined in:
- lib/aws-sdk-sagemaker/types.rb
Overview
Constant Summary collapse
- SENSITIVE =
[]
Instance Attribute Summary collapse
-
#auto_ml_compute_config ⇒ Types::AutoMLComputeConfig
Specifies the compute configuration for the AutoML job V2.
-
#auto_ml_job_input_data_config ⇒ Array<Types::AutoMLJobChannel>
An array of channel objects describing the input data and their location.
-
#auto_ml_job_name ⇒ String
Identifies an Autopilot job.
-
#auto_ml_job_objective ⇒ Types::AutoMLJobObjective
Specifies a metric to minimize or maximize as the objective of a job.
-
#auto_ml_problem_type_config ⇒ Types::AutoMLProblemTypeConfig
Defines the configuration settings of one of the supported problem types.
-
#data_split_config ⇒ Types::AutoMLDataSplitConfig
This structure specifies how to split the data into train and validation datasets.
-
#model_deploy_config ⇒ Types::ModelDeployConfig
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
-
#output_data_config ⇒ Types::AutoMLOutputDataConfig
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
-
#role_arn ⇒ String
The ARN of the role that is used to access the data.
-
#security_config ⇒ Types::AutoMLSecurityConfig
The security configuration for traffic encryption or Amazon VPC settings.
-
#tags ⇒ Array<Types::Tag>
An array of key-value pairs.
Instance Attribute Details
#auto_ml_compute_config ⇒ Types::AutoMLComputeConfig
Specifies the compute configuration for the AutoML job V2.
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730 class CreateAutoMLJobV2Request < Struct.new( :auto_ml_job_name, :auto_ml_job_input_data_config, :output_data_config, :auto_ml_problem_type_config, :role_arn, :tags, :security_config, :auto_ml_job_objective, :model_deploy_config, :data_split_config, :auto_ml_compute_config) SENSITIVE = [] include Aws::Structure end |
#auto_ml_job_input_data_config ⇒ Array<Types::AutoMLJobChannel>
An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the
- InputDataConfig][1
-
attribute in the ‘CreateAutoMLJob` input
parameters. The supported formats depend on the problem type:
-
For tabular problem types: ‘S3Prefix`, `ManifestFile`.
-
For image classification: ‘S3Prefix`, `ManifestFile`, `AugmentedManifestFile`.
-
For text classification: ‘S3Prefix`.
-
For time-series forecasting: ‘S3Prefix`.
-
For text generation (LLMs fine-tuning): ‘S3Prefix`.
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730 class CreateAutoMLJobV2Request < Struct.new( :auto_ml_job_name, :auto_ml_job_input_data_config, :output_data_config, :auto_ml_problem_type_config, :role_arn, :tags, :security_config, :auto_ml_job_objective, :model_deploy_config, :data_split_config, :auto_ml_compute_config) SENSITIVE = [] include Aws::Structure end |
#auto_ml_job_name ⇒ String
Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730 class CreateAutoMLJobV2Request < Struct.new( :auto_ml_job_name, :auto_ml_job_input_data_config, :output_data_config, :auto_ml_problem_type_config, :role_arn, :tags, :security_config, :auto_ml_job_objective, :model_deploy_config, :data_split_config, :auto_ml_compute_config) SENSITIVE = [] include Aws::Structure end |
#auto_ml_job_objective ⇒ Types::AutoMLJobObjective
Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see [AutoMLJobObjective].
<note markdown=“1”> * For tabular problem types: You must either provide both the
`AutoMLJobObjective` and indicate the type of supervised learning
problem in `AutoMLProblemTypeConfig`
(`TabularJobConfig.ProblemType`), or none at all.
-
For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the ‘AutoMLJobObjective` field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see [Metrics for fine-tuning LLMs in Autopilot].
</note>
[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730 class CreateAutoMLJobV2Request < Struct.new( :auto_ml_job_name, :auto_ml_job_input_data_config, :output_data_config, :auto_ml_problem_type_config, :role_arn, :tags, :security_config, :auto_ml_job_objective, :model_deploy_config, :data_split_config, :auto_ml_compute_config) SENSITIVE = [] include Aws::Structure end |
#auto_ml_problem_type_config ⇒ Types::AutoMLProblemTypeConfig
Defines the configuration settings of one of the supported problem types.
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730 class CreateAutoMLJobV2Request < Struct.new( :auto_ml_job_name, :auto_ml_job_input_data_config, :output_data_config, :auto_ml_problem_type_config, :role_arn, :tags, :security_config, :auto_ml_job_objective, :model_deploy_config, :data_split_config, :auto_ml_compute_config) SENSITIVE = [] include Aws::Structure end |
#data_split_config ⇒ Types::AutoMLDataSplitConfig
This structure specifies how to split the data into train and validation datasets.
The validation and training datasets must contain the same headers. For jobs created by calling ‘CreateAutoMLJob`, the validation dataset must be less than 2 GB in size.
<note markdown=“1”> This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.
</note>
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730 class CreateAutoMLJobV2Request < Struct.new( :auto_ml_job_name, :auto_ml_job_input_data_config, :output_data_config, :auto_ml_problem_type_config, :role_arn, :tags, :security_config, :auto_ml_job_objective, :model_deploy_config, :data_split_config, :auto_ml_compute_config) SENSITIVE = [] include Aws::Structure end |
#model_deploy_config ⇒ Types::ModelDeployConfig
Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730 class CreateAutoMLJobV2Request < Struct.new( :auto_ml_job_name, :auto_ml_job_input_data_config, :output_data_config, :auto_ml_problem_type_config, :role_arn, :tags, :security_config, :auto_ml_job_objective, :model_deploy_config, :data_split_config, :auto_ml_compute_config) SENSITIVE = [] include Aws::Structure end |
#output_data_config ⇒ Types::AutoMLOutputDataConfig
Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730 class CreateAutoMLJobV2Request < Struct.new( :auto_ml_job_name, :auto_ml_job_input_data_config, :output_data_config, :auto_ml_problem_type_config, :role_arn, :tags, :security_config, :auto_ml_job_objective, :model_deploy_config, :data_split_config, :auto_ml_compute_config) SENSITIVE = [] include Aws::Structure end |
#role_arn ⇒ String
The ARN of the role that is used to access the data.
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730 class CreateAutoMLJobV2Request < Struct.new( :auto_ml_job_name, :auto_ml_job_input_data_config, :output_data_config, :auto_ml_problem_type_config, :role_arn, :tags, :security_config, :auto_ml_job_objective, :model_deploy_config, :data_split_config, :auto_ml_compute_config) SENSITIVE = [] include Aws::Structure end |
#security_config ⇒ Types::AutoMLSecurityConfig
The security configuration for traffic encryption or Amazon VPC settings.
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730 class CreateAutoMLJobV2Request < Struct.new( :auto_ml_job_name, :auto_ml_job_input_data_config, :output_data_config, :auto_ml_problem_type_config, :role_arn, :tags, :security_config, :auto_ml_job_objective, :model_deploy_config, :data_split_config, :auto_ml_compute_config) SENSITIVE = [] include Aws::Structure end |
#tags ⇒ Array<Types::Tag>
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see [Tagging Amazon Web ServicesResources]. Tag keys must be unique per resource.
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 5730 class CreateAutoMLJobV2Request < Struct.new( :auto_ml_job_name, :auto_ml_job_input_data_config, :output_data_config, :auto_ml_problem_type_config, :role_arn, :tags, :security_config, :auto_ml_job_objective, :model_deploy_config, :data_split_config, :auto_ml_compute_config) SENSITIVE = [] include Aws::Structure end |