Module: RCSimCinterface
- Defined in:
- ext/hruby_sim/hruby_rcsim_build.c
Constant Summary collapse
- CPorts =
RCSimCports
Class Method Summary collapse
-
.rcsim_add_behavior_events(behaviorV, eventVs) ⇒ Object
Adds events to a C behavior.
-
.rcsim_add_block_inners(blockV, sigVs) ⇒ Object
Adds inners to a C block.
-
.rcsim_add_block_statements(blockV, stmntVs) ⇒ Object
Adds statements to a C block.
-
.rcsim_add_code_events(codeV, eventVs) ⇒ Object
Adds events to a C code.
-
.rcsim_add_concat_expressions(concatV, exprVs) ⇒ Object
Adds expressions to a C concat.
-
.rcsim_add_hcase_whens(hcaseV, matchVs, stmntVs) ⇒ Object
Adds whens to a C hardware case.
-
.rcsim_add_hif_noifs(hifV, condVs, stmntVs) ⇒ Object
Adds noifs to a C hardware if.
-
.rcsim_add_print_args(printV, argVs) ⇒ Object
Adds arguments to a C print.
-
.rcsim_add_refConcat_refs(refConcatV, refVs) ⇒ Object
Adds references to a C ref concat.
-
.rcsim_add_scope_behaviors(scopeV, behVs) ⇒ Object
Adds behaviors to a C scope.
-
.rcsim_add_scope_codes(scopeV, codeVs) ⇒ Object
Adds codes to a C scope.
-
.rcsim_add_scope_inners(scopeV, sigVs) ⇒ Object
Adds inners to a C scope.
-
.rcsim_add_scope_scopes(scopeV, scpVs) ⇒ Object
Adds sub scopes to a C scope.
-
.rcsim_add_scope_systemIs(scopeV, sysVs) ⇒ Object
Adds system instances to a C scope.
-
.rcsim_add_select_choices(selectV, choiceVs) ⇒ Object
Adds choices to a C select.
-
.rcsim_add_signal_signals(signalIV, sigVs) ⇒ Object
Adds sub signals a C signal.
-
.rcsim_add_systemI_systemTs(systemIV, sysVs) ⇒ Object
Adds alternate system types to a C system instance.
-
.rcsim_add_systemT_inouts(systemTV, sigVs) ⇒ Object
Adds inouts to a C systemT.
-
.rcsim_add_systemT_inputs(systemTV, sigVs) ⇒ Object
Adds inputs to a C systemT.
-
.rcsim_add_systemT_outputs(systemTV, sigVs) ⇒ Object
Adds outputs to a C systemT.
-
.rcsim_get_signal_fixnum(signalV) ⇒ Object
Gets the value of a C signal as a Ruby fixnum.
-
.rcsim_get_type_bit ⇒ Object
Get the bit type.
-
.rcsim_get_type_signed ⇒ Object
Get the signed type.
-
.rcsim_get_type_vector(baseV, numV) ⇒ Object
Get a vector type.
-
.rcsim_load_c(codeV, libnameV, funcnameV) ⇒ Object
Loads a C program dynamic library (called from HDLRuby) for a code.
-
.rcsim_main(systemTV, name, outmodeV) ⇒ Object
Starts the C-Ruby hybrid simulation.
-
.rcsim_make_behavior(timed) ⇒ Object
Creating a behavior C object.
-
.rcsim_make_binary(type, operator, left, right) ⇒ Object
Creating a binary value C object.
-
.rcsim_make_block(modeV) ⇒ Object
Creating a block C object.
-
.rcsim_make_cast(type, child) ⇒ Object
Creating a cast C object.
-
.rcsim_make_code(lang, funcname) ⇒ Object
Creating a system code C object.
-
.rcsim_make_concat(type, dirV) ⇒ Object
Creating a concat C object.
-
.rcsim_make_event(typeV, sigV) ⇒ Object
Creating an event C object.
-
.rcsim_make_hcase(valueV, defoltV) ⇒ Object
Creating a hardware case C object.
-
.rcsim_make_hif(conditionV, yesV, noV) ⇒ Object
Creating a hardware if C object.
-
.rcsim_make_print ⇒ Object
Creating a print C object.
-
.rcsim_make_refConcat(type, dirV) ⇒ Object
Creating a ref concat C object.
-
.rcsim_make_refIndex(type, index, ref) ⇒ Object
Creating a ref index C object.
-
.rcsim_make_refRange(type, first, last, ref) ⇒ Object
Creating a ref range C object.
-
.rcsim_make_scope(name) ⇒ Object
Creating a scope C object.
-
.rcsim_make_select(type, sel) ⇒ Object
Creating a select C object.
-
.rcsim_make_signal(name, type) ⇒ Object
Creating a signal C object.
-
.rcsim_make_stringE(strV) ⇒ Object
Creating a character string C object.
-
.rcsim_make_systemI(name, systemT) ⇒ Object
Creating a system instance C object.
-
.rcsim_make_systemT(name) ⇒ Object
Creating a systemT C object.
-
.rcsim_make_timeRepeat(numberV, statementV) ⇒ Object
Creating a time repeat C object.
-
.rcsim_make_timeTerminate ⇒ Object
Creating a time terminate C object.
-
.rcsim_make_timeWait(unitV, delayV) ⇒ Object
Creating a time wait C object.
-
.rcsim_make_transmit(left, right) ⇒ Object
Creating a transmit C object.
-
.rcsim_make_unary(type, operator, child) ⇒ Object
Creating a unary value C object.
-
.rcsim_make_value_bitstring(typeV, contentV) ⇒ Object
Creating a bitstring value C object.
-
.rcsim_make_value_numeric(typeV, contentV) ⇒ Object
Creating a numeric value C object.
-
.rcsim_set_behavior_block(behaviorV, blockV) ⇒ Object
Sets the block for a C behavior.
-
.rcsim_set_owner(objV, ownerV) ⇒ Object
Sets the owner for a C simulation object.
-
.rcsim_set_signal_value(signalV, exprV) ⇒ Object
Sets the value for a C signal.
-
.rcsim_set_systemT_scope(systemTV, scopeV) ⇒ Object
Sets the scope for a C system type.
-
.rcsim_transmit_fixnum_to_signal_seq(signalV, valR) ⇒ Object
Transmit a Ruby fixnum to a signal in a non-blocking fashion.
Class Method Details
.rcsim_add_behavior_events(behaviorV, eventVs) ⇒ Object
Adds events to a C behavior.
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1137
VALUE rcsim_add_behavior_events(VALUE mod, VALUE behaviorV, VALUE eventVs) {
/* Get the C behavior from the Ruby value. */
Behavior behavior;
value_to_rcsim(BehaviorS,behaviorV,behavior);
// printf("rcsim_add_behavior_events with behavior=%p\n",behavior);
/* Prepare the size for the events. */
long num = RARRAY_LEN(eventVs);
long old_num = behavior->num_events;
behavior->num_events += num;
// printf("first behavior->events=%p\n",behavior->events); fflush(stdout);
behavior->events = realloc(behavior->events,
sizeof(Event[behavior->num_events]));
// behavior->events = (Event*)my_realloc(behavior->events,
// sizeof(Event[old_num]), sizeof(Event[behavior->num_events]));
// printf("now behavior->events=%p\n",behavior->events); fflush(stdout);
// printf("access test: %p\n",behavior->events[0]); fflush(stdout);
/* Get and add the events from the Ruby value. */
for(long i=0; i< num; ++i) {
Event event;
// show_access(behavior->events,old_num+i);
value_to_rcsim(EventS,rb_ary_entry(eventVs,i),event);
behavior->events[old_num + i] = event;
/* Update the signal of the event to say it activates the behavior. */
SignalI sig = event->signal;
switch(event->edge) {
case ANYEDGE:
sig->num_any++;
// printf("first sig->any=%p\n",sig->any); fflush(stdout);
sig->any = realloc(sig->any,sizeof(Object[sig->num_any]));
// sig->any = (Object*)my_realloc(sig->any,
// sizeof(Object[sig->num_any-1]),sizeof(Object[sig->num_any]));
// printf("now sig->any=%p\n",sig->any); fflush(stdout);
// printf("access test: %p\n",sig->any[0]); fflush(stdout);
// show_access(sig->any,sig->num_any-1);
// printf("sig->any=%p\n",sig->any);
sig->any[sig->num_any-1] = (Object)behavior;
break;
case POSEDGE:
sig->num_pos++;
// printf("first sig->pos=%p\n",sig->pos); fflush(stdout);
sig->pos = realloc(sig->pos,sizeof(Object[sig->num_pos]));
// sig->pos = (Object*)my_realloc(sig->pos,
// sizeof(Object[sig->num_pos-1]),sizeof(Object[sig->num_pos]));
// printf("now sig->pos=%p\n",sig->pos); fflush(stdout);
// printf("access test: %p\n",sig->pos[0]); fflush(stdout);
// show_access(sig->pos,sig->num_pos-1);
// printf("sig->pos=%p\n",sig->pos);
sig->pos[sig->num_pos-1] = (Object)behavior;
break;
case NEGEDGE:
sig->num_neg++;
// printf("first sig->neg=%p\n",sig->neg); fflush(stdout);
sig->neg = realloc(sig->neg,sizeof(Object[sig->num_neg]));
// sig->neg = (Object*)my_realloc(sig->neg,
// sizeof(Object[sig->num_neg-1]),sizeof(Object[sig->num_neg]));
// printf("now sig->neg=%p\n",sig->neg); fflush(stdout);
// printf("access test: %p\n",sig->neg[0]); fflush(stdout);
// show_access(sig->neg,sig->num_neg-1);
// printf("sig->neg=%p\n",sig->neg);
sig->neg[sig->num_neg-1] = (Object)behavior;
break;
default:
perror("Invalid value for an edge.");
}
}
return behaviorV;
}
|
.rcsim_add_block_inners(blockV, sigVs) ⇒ Object
Adds inners to a C block.
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1404
VALUE rcsim_add_block_inners(VALUE mod, VALUE blockV, VALUE sigVs) {
/* Get the C block from the Ruby value. */
Block block;
value_to_rcsim(BlockS,blockV,block);
// printf("rcsim_add_block_inners with block=%p\n",block);
/* Prepare the size for the inners. */
long num = RARRAY_LEN(sigVs);
long old_num = block->num_inners;
block->num_inners += num;
// printf("first block->inners=%p\n",block->inners); fflush(stdout);
block->inners = realloc(block->inners,
sizeof(SignalI[block->num_inners]));
// block->inners = (SignalI*)my_realloc(block->inners,
// sizeof(SignalI[old_num]), sizeof(SignalI[block->num_inners]));
// printf("now block->inners=%p\n",block->inners); fflush(stdout);
// printf("access test: %p\n",block->inners[0]); fflush(stdout);
/* Get and add the signals from the Ruby value. */
for(long i=0; i< num; ++i) {
SignalI sig;
// show_access(block->inners,old_num+i);
value_to_rcsim(SignalIS,rb_ary_entry(sigVs,i),sig);
block->inners[old_num + i] = sig;
}
return blockV;
}
|
.rcsim_add_block_statements(blockV, stmntVs) ⇒ Object
Adds statements to a C block.
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1431
VALUE rcsim_add_block_statements(VALUE mod, VALUE blockV, VALUE stmntVs) {
/* Get the C block from the Ruby value. */
Block block;
value_to_rcsim(BlockS,blockV,block);
// printf("rcsim_add_block_statements with block=%p\n",block);
/* Prepare the size for the statements. */
long num = RARRAY_LEN(stmntVs);
long old_num = block->num_stmnts;
block->num_stmnts += num;
// printf("first block->stmnts=%p\n",block->stmnts); fflush(stdout);
block->stmnts = realloc(block->stmnts,
sizeof(Statement[block->num_stmnts]));
// block->stmnts = (Statement*)my_realloc(block->stmnts,
// sizeof(Statement[old_num]), sizeof(Statement[block->num_stmnts]));
// printf("now block->stmnts=%p\n",block->stmnts); fflush(stdout);
// printf("access test: %p\n",block->stmnts[0]); fflush(stdout);
/* Get and add the statements from the Ruby value. */
for(long i=0; i< num; ++i) {
Statement stmnt;
// show_access(block->stmnts,old_num+i);
value_to_rcsim(StatementS,rb_ary_entry(stmntVs,i),stmnt);
block->stmnts[old_num + i] = stmnt;
}
return blockV;
}
|
.rcsim_add_code_events(codeV, eventVs) ⇒ Object
Adds events to a C code.
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1207
VALUE rcsim_add_code_events(VALUE mod, VALUE codeV, VALUE eventVs) {
/* Get the C code from the Ruby value. */
Code code;
value_to_rcsim(CodeS,codeV,code);
// printf("rcsim_add_codee_events with code=%p\n",code);
/* Prepare the size for the events. */
long num = RARRAY_LEN(eventVs);
long old_num = code->num_events;
code->num_events += num;
// printf("first code->events=%p\n",code->events); fflush(stdout);
code->events = realloc(code->events,
sizeof(Event[code->num_events]));
// printf("now code->events=%p\n",code->events); fflush(stdout);
// printf("access test: %p\n",code->events[0]); fflush(stdout);
/* Get and add the events from the Ruby value. */
for(long i=0; i< num; ++i) {
Event event;
value_to_rcsim(EventS,rb_ary_entry(eventVs,i),event);
code->events[old_num + i] = event;
/* Update the signal of the event to say it activates the code. */
SignalI sig = event->signal;
switch(event->edge) {
case ANYEDGE:
sig->num_any++;
sig->any = realloc(sig->any,sizeof(Object[sig->num_any]));
sig->any[sig->num_any-1] = (Object)code;
break;
case POSEDGE:
sig->num_pos++;
sig->pos = realloc(sig->pos,sizeof(Object[sig->num_pos]));
sig->pos[sig->num_pos-1] = (Object)code;
break;
case NEGEDGE:
sig->num_neg++;
sig->neg = realloc(sig->neg,sizeof(Object[sig->num_neg]));
sig->neg[sig->num_neg-1] = (Object)code;
break;
default:
perror("Invalid value for an edge.");
}
}
return codeV;
}
|
.rcsim_add_concat_expressions(concatV, exprVs) ⇒ Object
Adds expressions to a C concat.
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1485
VALUE rcsim_add_concat_expressions(VALUE mod, VALUE concatV, VALUE exprVs) {
/* Get the C concat from the Ruby value. */
Concat concat;
value_to_rcsim(ConcatS,concatV,concat);
// printf("rcsim_add_concat_expressions with concat=%p\n",concat);
/* Prepare the size for the expressions. */
long num = RARRAY_LEN(exprVs);
long old_num = concat->num_exprs;
// printf("add_concat_expressions with num=%li old_num=%li\n",num,old_num);
concat->num_exprs += num;
// printf("first concat->exprs=%p\n",concat->exprs); fflush(stdout);
concat->exprs = realloc(concat->exprs,
sizeof(Expression[concat->num_exprs]));
// concat->exprs = (Expression*)my_realloc(concat->exprs,
// sizeof(Expression[old_num]), sizeof(Expression[concat->num_exprs]));
// printf("now concat->exprs=%p\n",concat->exprs); fflush(stdout);
// printf("access test: %p\n",concat->exprs[0]); fflush(stdout);
/* Get and add the expressions from the Ruby value. */
for(long i=0; i< num; ++i) {
Expression expr;
// show_access(concat->exprs,old_num+i);
value_to_rcsim(ExpressionS,rb_ary_entry(exprVs,i),expr);
concat->exprs[old_num + i] = expr;
}
return concatV;
}
|
.rcsim_add_hcase_whens(hcaseV, matchVs, stmntVs) ⇒ Object
Adds whens to a C hardware case.
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1366
VALUE rcsim_add_hcase_whens(VALUE mod, VALUE hcaseV, VALUE matchVs, VALUE stmntVs) {
/* Get the C hardware case from the Ruby value. */
HCase hcase;
value_to_rcsim(HCaseS,hcaseV,hcase);
// printf("rcsim_add_hcase_whens with hcase=%p\n",hcase);
/* Prepare the size for the noifs. */
long num = RARRAY_LEN(matchVs);
long old_num = hcase->num_whens;
hcase->num_whens += num;
// printf("first hcase->matches=%p\n",hcase->matches); fflush(stdout);
// printf("first hcase->stmnts=%p\n",hcase->stmnts); fflush(stdout);
hcase->matches = realloc(hcase->matches,
sizeof(Expression[hcase->num_whens]));
// hcase->matches = (Expression*)my_realloc(hcase->matches,
// sizeof(Expression[old_num]), sizeof(Expression[hcase->num_whens]));
// printf("now hcase->matches=%p\n",hcase->matches); fflush(stdout);
// printf("access test: %p\n",hcase->matches[0]); fflush(stdout);
hcase->stmnts = realloc(hcase->stmnts,
sizeof(Statement[hcase->num_whens]));
// hcase->stmnts = (Statement*)my_realloc(hcase->stmnts,
// sizeof(Statement[old_num]), sizeof(Statement[hcase->num_whens]));
// printf("now hcase->stmnts=%p\n",hcase->stmnts); fflush(stdout);
// printf("access test: %p\n",hcase->stmnts[0]); fflush(stdout);
/* Get and add the whens from the Ruby value. */
for(long i=0; i< num; ++i) {
Expression match;
Statement stmnt;
// show_access(hcase->matches,old_num+i);
// show_access(hcase->stmnts,old_num+i);
value_to_rcsim(ExpressionS,rb_ary_entry(matchVs,i),match);
hcase->matches[old_num + i] = match;
value_to_rcsim(StatementS,rb_ary_entry(stmntVs,i),stmnt);
hcase->stmnts[old_num + i] = stmnt;
}
return hcaseV;
}
|
.rcsim_add_hif_noifs(hifV, condVs, stmntVs) ⇒ Object
Adds noifs to a C hardware if.
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1330
VALUE rcsim_add_hif_noifs(VALUE mod, VALUE hifV, VALUE condVs, VALUE stmntVs) {
/* Get the C hardware if from the Ruby value. */
HIf hif;
value_to_rcsim(HIfS,hifV,hif);
// printf("rcsim_add_hif_noifs with hif=%p\n",hif);
/* Prepare the size for the noifs. */
long num = RARRAY_LEN(condVs);
long old_num = hif->num_noifs;
hif->num_noifs += num;
// printf("first hif->noconds=%p\n",hif->noconds); fflush(stdout);
// printf("first hif->nostmnts=%p\n",hif->nostmnts); fflush(stdout);
hif->noconds = realloc(hif->noconds,sizeof(Expression[hif->num_noifs]));
// hif->noconds = (Expression*)my_realloc(hif->noconds,
// sizeof(Expression[old_num]),sizeof(Expression[hif->num_noifs]));
// printf("now hif->noconds=%p\n",hif->noconds); fflush(stdout);
// printf("access test: %p\n",hif->noconds[0]); fflush(stdout);
hif->nostmnts = realloc(hif->nostmnts,sizeof(Statement[hif->num_noifs]));
// hif->nostmnts = (Statement*)my_realloc(hif->nostmnts,
// sizeof(Statement[old_num]),sizeof(Statement[hif->num_noifs]));
// printf("now hif->nostmnts=%p\n",hif->nostmnts); fflush(stdout);
// printf("access test: %p\n",hif->nostmnts[0]); fflush(stdout);
/* Get and add the noifs from the Ruby value. */
for(long i=0; i< num; ++i) {
Expression cond;
Statement stmnt;
// show_access(hif->noconds,old_num+i);
// show_access(hif->nostmnts,old_num+i);
value_to_rcsim(ExpressionS,rb_ary_entry(condVs,i),cond);
hif->noconds[old_num + i] = cond;
value_to_rcsim(StatementS,rb_ary_entry(stmntVs,i),stmnt);
hif->nostmnts[old_num + i] = stmnt;
}
return hifV;
}
|
.rcsim_add_print_args(printV, argVs) ⇒ Object
Adds arguments to a C print.
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1303
VALUE rcsim_add_print_args(VALUE mod, VALUE printV, VALUE argVs) {
/* Get the C print from the Ruby value. */
Print print;
value_to_rcsim(PrintS,printV,print);
// printf("rcsim_add_print_args with print=%p\n",print);
/* Prepare the size for the arguments. */
long num = RARRAY_LEN(argVs);
long old_num = print->num_args;
print->num_args += num;
// printf("first print->args=%p\n",print->args); fflush(stdout);
print->args = realloc(print->args,
sizeof(Expression[print->num_args]));
// print->args = (Expression*)my_realloc(print->args,
// sizeof(Expression[old_num]), sizeof(Expression[print->num_args]));
// printf("now print->args=%p\n",print->args); fflush(stdout);
// printf("access test: %p\n",print->args[0]); fflush(stdout);
/* Get and add the arguments from the Ruby value. */
for(long i=0; i< num; ++i) {
Expression arg;
// show_access(print->args,old_num+i);
value_to_rcsim(ExpressionS,rb_ary_entry(argVs,i),arg);
print->args[old_num + i] = arg;
}
return printV;
}
|
.rcsim_add_refConcat_refs(refConcatV, refVs) ⇒ Object
Adds references to a C ref concat.
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1513
VALUE rcsim_add_refConcat_refs(VALUE mod, VALUE refConcatV, VALUE refVs) {
/* Get the C refConcat from the Ruby value. */
RefConcat refConcat;
value_to_rcsim(RefConcatS,refConcatV,refConcat);
// printf("rcsim_add_refConcat_refs with refConcat=%p\n",refConcat);
/* Prepare the size for the references. */
long num = RARRAY_LEN(refVs);
long old_num = refConcat->num_refs;
refConcat->num_refs += num;
// printf("first refConcat->refs=%p\n",refConcat->refs); fflush(stdout);
refConcat->refs = realloc(refConcat->refs,
sizeof(Reference[refConcat->num_refs]));
// refConcat->refs = (Reference*)my_realloc(refConcat->refs,
// sizeof(Reference[old_num]), sizeof(Reference[refConcat->num_refs]));
// printf("now refConcat->refs=%p\n",refConcat->refs); fflush(stdout);
// printf("access test: %p\n",refConcat->refs[0]); fflush(stdout);
/* Get and add the references from the Ruby value. */
for(long i=0; i< num; ++i) {
Reference ref;
// show_access(refConcat->refs,old_num+i);
value_to_rcsim(ReferenceS,rb_ary_entry(refVs,i),ref);
refConcat->refs[old_num + i] = ref;
// printf("ref=%p ref &type=%p type=%p width=%llu\n",ref,&(ref->type),ref->type,type_width(ref->type));
}
return refConcatV;
}
|
.rcsim_add_scope_behaviors(scopeV, behVs) ⇒ Object
Adds behaviors to a C scope.
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1029
VALUE rcsim_add_scope_behaviors(VALUE mod, VALUE scopeV, VALUE behVs) {
// printf("rcsim_add_scope_behaviors\n");
/* Get the C scope from the Ruby value. */
Scope scope;
value_to_rcsim(ScopeS,scopeV,scope);
// printf("rcsim_add_scope_behaviors with scope=%p\n",scope);
/* Prepare the size for the behaviors. */
long num = RARRAY_LEN(behVs);
long old_num = scope->num_behaviors;
// printf("num=%lu old_num=%lu\n",num,old_num);
// printf("scope->behaviors=%p\n",scope->behaviors);
scope->num_behaviors += num;
// printf("first scope->behaviors=%p\n",scope->behaviors); fflush(stdout);
scope->behaviors = realloc(scope->behaviors,
sizeof(Behavior[scope->num_behaviors]));
// scope->behaviors = (Behavior*)my_realloc(scope->behaviors,
// sizeof(Behavior[old_num]), sizeof(Behavior[scope->num_behaviors]));
// printf("now scope->behaviors=%p\n",scope->behaviors); fflush(stdout);
// printf("access test: %p\n",scope->behaviors[0]); fflush(stdout);
/* Get and add the behaviors from the Ruby value. */
for(long i=0; i< num; ++i) {
Behavior beh;
// show_access(scope->behaviors,old_num+i);
value_to_rcsim(BehaviorS,rb_ary_entry(behVs,i),beh);
scope->behaviors[old_num + i] = beh;
}
return scopeV;
}
|
.rcsim_add_scope_codes(scopeV, codeVs) ⇒ Object
Adds codes to a C scope.
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1086
VALUE rcsim_add_scope_codes(VALUE mod, VALUE scopeV, VALUE codeVs) {
/* Get the C scope from the Ruby value. */
Scope scope;
value_to_rcsim(ScopeS,scopeV,scope);
// printf("rcsim_add_scope_codes with scope=%p\n",scope);
/* Prepare the size for the codes. */
long num = RARRAY_LEN(codeVs);
long old_num = scope->num_codes;
scope->num_codes += num;
// printf("first scope->codes=%p\n",scope->codes); fflush(stdout);
scope->codes = realloc(scope->codes,
sizeof(Code[scope->num_codes]));
// printf("now scope->codes=%p\n",scope->codes); fflush(stdout);
// printf("access test: %p\n",scope->codes[0]); fflush(stdout);
/* Get and add the codes from the Ruby value. */
for(long i=0; i< num; ++i) {
Code code;
value_to_rcsim(CodeS,rb_ary_entry(codeVs,i),code);
scope->codes[old_num + i] = code;
}
return scopeV;
}
|
.rcsim_add_scope_inners(scopeV, sigVs) ⇒ Object
Adds inners to a C scope.
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1002
VALUE rcsim_add_scope_inners(VALUE mod, VALUE scopeV, VALUE sigVs) {
/* Get the C scope from the Ruby value. */
Scope scope;
value_to_rcsim(ScopeS,scopeV,scope);
// printf("rcsim_add_scope_inners with scope=%p\n",scope);
/* Prepare the size for the inners. */
long num = RARRAY_LEN(sigVs);
long old_num = scope->num_inners;
scope->num_inners += num;
// printf("first scope->inners=%p\n",scope->inners); fflush(stdout);
scope->inners = realloc(scope->inners,
sizeof(SignalI[scope->num_inners]));
// scope->inners = (SignalI*)my_realloc(scope->inners,
// sizeof(SignalI[old_num]), sizeof(SignalI[scope->num_inners]));
// printf("now scope->inners=%p\n",scope->inners); fflush(stdout);
// printf("access test: %p\n",scope->inners[0]); fflush(stdout);
/* Get and add the signals from the Ruby value. */
for(long i=0; i< num; ++i) {
SignalI sig;
// show_access(scope->inners,old_num+i);
value_to_rcsim(SignalIS,rb_ary_entry(sigVs,i),sig);
scope->inners[old_num + i] = sig;
}
return scopeV;
}
|
.rcsim_add_scope_scopes(scopeV, scpVs) ⇒ Object
Adds sub scopes to a C scope.
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1110
VALUE rcsim_add_scope_scopes(VALUE mod, VALUE scopeV, VALUE scpVs) {
/* Get the C scope from the Ruby value. */
Scope scope;
value_to_rcsim(ScopeS,scopeV,scope);
// printf("rcsim_add_scope_scopes with scope=%p\n",scope);
/* Prepare the size for the sub scopes. */
long num = RARRAY_LEN(scpVs);
long old_num = scope->num_scopes;
scope->num_scopes += num;
// printf("first scope->scopes=%p\n",scope->scopes); fflush(stdout);
scope->scopes = realloc(scope->scopes,
sizeof(Scope[scope->num_scopes]));
// scope->scopes = (Scope*)my_realloc(scope->scopes,
// sizeof(Scope[old_num]), sizeof(Scope[scope->num_scopes]));
// printf("now scope->scopes=%p\n",scope->scopes); fflush(stdout);
// printf("access test: %p\n",scope->scopes[0]); fflush(stdout);
/* Get and add the sub scopes from the Ruby value. */
for(long i=0; i< num; ++i) {
Scope scp;
// show_access(scope->scopes,old_num+i);
value_to_rcsim(ScopeS,rb_ary_entry(scpVs,i),scp);
scope->scopes[old_num + i] = scp;
}
return scopeV;
}
|
.rcsim_add_scope_systemIs(scopeV, sysVs) ⇒ Object
Adds system instances to a C scope.
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1059
VALUE rcsim_add_scope_systemIs(VALUE mod, VALUE scopeV, VALUE sysVs) {
/* Get the C scope from the Ruby value. */
Scope scope;
value_to_rcsim(ScopeS,scopeV,scope);
// printf("rcsim_add_scope_systemIs with scope=%p\n",scope);
/* Prepare the size for the system instances. */
long num = RARRAY_LEN(sysVs);
long old_num = scope->num_systemIs;
scope->num_systemIs += num;
// printf("first scope->systemIs=%p\n",scope->systemIs); fflush(stdout);
scope->systemIs = realloc(scope->systemIs,
sizeof(SystemI[scope->num_systemIs]));
// scope->systemIs = (SystemI*)my_realloc(scope->systemIs,
// sizeof(SystemI[old_num]), sizeof(SystemI[scope->num_systemIs]));
// printf("now scope->systemIs=%p\n",scope->systemIs); fflush(stdout);
// printf("access test: %p\n",scope->systemIs[0]); fflush(stdout);
/* Get and add the system instances from the Ruby value. */
for(long i=0; i< num; ++i) {
SystemI sys;
// show_access(scope->systemIs,old_num+i);
value_to_rcsim(SystemIS,rb_ary_entry(sysVs,i),sys);
scope->systemIs[old_num + i] = sys;
}
return scopeV;
}
|
.rcsim_add_select_choices(selectV, choiceVs) ⇒ Object
Adds choices to a C select.
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1458
VALUE rcsim_add_select_choices(VALUE mod, VALUE selectV, VALUE choiceVs) {
/* Get the C select from the Ruby value. */
Select select;
value_to_rcsim(SelectS,selectV,select);
// printf("rcsim_add_select_choices with select=%p\n",select);
/* Prepare the size for the choices. */
long num = RARRAY_LEN(choiceVs);
long old_num = select->num_choices;
select->num_choices += num;
// printf("first select->choices=%p\n",select->choices); fflush(stdout);
select->choices = realloc(select->choices,
sizeof(Expression[select->num_choices]));
// Select->choices = (Expression*)my_realloc(select->choices,
// sizeof(Expression[old_num]),sizeof(Expression[select->num_choices]));
// printf("now select->choices=%p\n",select->choices); fflush(stdout);
// printf("access test: %p\n",select->choices[0]); fflush(stdout);
/* Get and add the choices from the Ruby value. */
for(long i=0; i< num; ++i) {
Expression choice;
// show_access(select->choices,old_num+i);
value_to_rcsim(ExpressionS,rb_ary_entry(choiceVs,i),choice);
select->choices[old_num + i] = choice;
}
return selectV;
}
|
.rcsim_add_signal_signals(signalIV, sigVs) ⇒ Object
Adds sub signals a C signal.
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1280
VALUE rcsim_add_signal_signals(VALUE mod, VALUE signalIV, VALUE sigVs) {
/* Get the C signal from the Ruby value. */
SignalI signalI;
value_to_rcsim(SignalIS,signalIV,signalI);
// printf("rcsim_add_signal_signals with signalI=%p\n",signalI);
/* Prepare the size for the alternate system types. */
long num = RARRAY_LEN(sigVs);
long old_num = signalI->num_signals;
signalI->num_signals += num;
signalI->signals=realloc(signalI->signals,
sizeof(SignalI[signalI->num_signals]));
// signalI->signals = (SignalI*)my_realloc(signalI->signals,
// sizeof(SignalI[old_num]), sizeof(SignalI[signalI->num_signals]));
/* Get and add the alternate system types from the Ruby value. */
for(long i=0; i< num; ++i) {
SignalI sig;
value_to_rcsim(SignalIS,rb_ary_entry(sigVs,i),sig);
signalI->signals[old_num + i] = sig;
}
return signalIV;
}
|
.rcsim_add_systemI_systemTs(systemIV, sysVs) ⇒ Object
Adds alternate system types to a C system instance.
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1253
VALUE rcsim_add_systemI_systemTs(VALUE mod, VALUE systemIV, VALUE sysVs) {
/* Get the C systemI from the Ruby value. */
SystemI systemI;
value_to_rcsim(SystemIS,systemIV,systemI);
// printf("rcsim_add_systemI_systemTs with systemI=%p\n",systemI);
/* Prepare the size for the alternate system types. */
long num = RARRAY_LEN(sysVs);
long old_num = systemI->num_systems;
systemI->num_systems += num;
// printf("first systemI->systems=%p\n",systemI->systems); fflush(stdout);
systemI->systems=realloc(systemI->systems,
sizeof(SystemT[systemI->num_systems]));
// systemI->systems = (SystemT*)my_realloc(systemI->systems,
// sizeof(SystemT[old_num]), sizeof(SystemT[systemI->num_systems]));
// printf("now systemI->systems=%p\n",systemI->systems); fflush(stdout);
// printf("access test: %p\n",systemI->systems[0]); fflush(stdout);
/* Get and add the alternate system types from the Ruby value. */
for(long i=0; i< num; ++i) {
SystemT sys;
// show_access(systemI->systems,old_num+i);
value_to_rcsim(SystemTS,rb_ary_entry(sysVs,i),sys);
systemI->systems[old_num + i] = sys;
}
return systemIV;
}
|
.rcsim_add_systemT_inouts(systemTV, sigVs) ⇒ Object
Adds inouts to a C systemT.
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 975
VALUE rcsim_add_systemT_inouts(VALUE mod, VALUE systemTV, VALUE sigVs) {
/* Get the C systemT from the Ruby value. */
SystemT systemT;
value_to_rcsim(SystemTS,systemTV,systemT);
// printf("rcsim_add_systemT_inputs with systemT=%p\n",systemT);
/* Prepare the size for the inouts. */
long num = RARRAY_LEN(sigVs);
long old_num = systemT->num_inouts;
systemT->num_inouts += num;
// printf("first systemT->inouts=%p\n",systemT->inouts); fflush(stdout);
systemT->inouts =realloc(systemT->inouts,
sizeof(SignalI[systemT->num_inouts]));
// systemT->inouts =(SignalI*)my_realloc(systemT->inouts,
// sizeof(SignalI[old_num]), sizeof(SignalI[systemT->num_inouts]));
// printf("now systemT->inouts=%p\n",systemT->inouts); fflush(stdout);
// printf("access test: %p\n",systemT->inouts[0]); fflush(stdout);
/* Get and add the signals from the Ruby value. */
for(long i=0; i< num; ++i) {
SignalI sig;
// show_access(systemT->inouts,old_num+i);
value_to_rcsim(SignalIS,rb_ary_entry(sigVs,i),sig);
systemT->inouts[old_num + i] = sig;
}
return systemTV;
}
|
.rcsim_add_systemT_inputs(systemTV, sigVs) ⇒ Object
Adds inputs to a C systemT.
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 920
VALUE rcsim_add_systemT_inputs(VALUE mod, VALUE systemTV, VALUE sigVs) {
/* Get the C systemT from the Ruby value. */
SystemT systemT;
value_to_rcsim(SystemTS,systemTV,systemT);
// printf("rcsim_add_systemT_inputs with systemT=%p\n",systemT);
// printf("Adding to systemT with kind=%d and name=%s\n",systemT->kind, systemT->name);
/* Prepare the size for the inputs. */
long num = RARRAY_LEN(sigVs);
long old_num = systemT->num_inputs;
systemT->num_inputs += num;
// printf("first systemT->inputs=%p\n",systemT->inputs); fflush(stdout);
systemT->inputs=realloc(systemT->inputs,
sizeof(SignalI[systemT->num_inputs]));
// systemT->inputs=(SignalI*)my_realloc(systemT->inputs,
// sizeof(SignalI[old_num]), sizeof(SignalI[systemT->num_inputs]));
// printf("now systemT->inputs=%p\n",systemT->inputs); fflush(stdout);
// printf("access test: %p\n",systemT->inputs[0]); fflush(stdout);
/* Get and add the signals from the Ruby value. */
for(long i=0; i< num; ++i) {
SignalI sig;
// show_access(systemT->inputs,old_num+i);
value_to_rcsim(SignalIS,rb_ary_entry(sigVs,i),sig);
systemT->inputs[old_num + i] = sig;
}
return systemTV;
}
|
.rcsim_add_systemT_outputs(systemTV, sigVs) ⇒ Object
Adds outputs to a C systemT.
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 948
VALUE rcsim_add_systemT_outputs(VALUE mod, VALUE systemTV, VALUE sigVs) {
/* Get the C systemT from the Ruby value. */
SystemT systemT;
value_to_rcsim(SystemTS,systemTV,systemT);
// printf("rcsim_add_systemT_inputs with systemT=%p\n",systemT);
/* Prepare the size for the outputs. */
long num = RARRAY_LEN(sigVs);
long old_num = systemT->num_outputs;
systemT->num_outputs += num;
// printf("first systemT->outputs=%p\n",systemT->outputs); fflush(stdout);
systemT->outputs =realloc(systemT->outputs,
sizeof(SignalI[systemT->num_outputs]));
// systemT->outputs =(SignalI*)my_realloc(systemT->outputs,
// sizeof(SignalI[old_num]), sizeof(SignalI[systemT->num_outputs]));
// printf("now systemT->outputs=%p\n",systemT->outputs); fflush(stdout);
// printf("access test: %p\n",systemT->outputs[0]); fflush(stdout);
/* Get and add the signals from the Ruby value. */
for(long i=0; i< num; ++i) {
SignalI sig;
// show_access(systemT->outputs,old_num+i);
value_to_rcsim(SignalIS,rb_ary_entry(sigVs,i),sig);
systemT->outputs[old_num + i] = sig;
}
return systemTV;
}
|
.rcsim_get_signal_fixnum(signalV) ⇒ Object
Gets the value of a C signal as a Ruby fixnum. Sets 0 if the value contains x or z bits.
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1659
VALUE rcsim_get_signal_fixnum(VALUE mod, VALUE signalV) {
Value value;
/* Get the C signal from the Ruby value. */
SignalI signal;
value_to_rcsim(SignalIS,signalV,signal);
// printf("rc_sim_get_signal_fixnum for signal=%s\n",signal->name);
/* Get the value from the signal. */
value = signal->c_value;
// /* Is the value a numeric? */
// if(value->numeric == 1) {
// /* Yes, return it as a Ruby fixnum. */
// return LONG2FIX(value->data_int);
// } else {
// /* No, return 0. */
// return LONG2FIX(0);
// }
return LONG2FIX(value2integer(value));
}
|
.rcsim_get_type_bit ⇒ Object
Get the bit type.
173 174 175 176 177 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 173 VALUE rcsim_get_type_bit(VALUE mod) { VALUE res; rcsim_to_value(TypeS,get_type_bit(),res); return res; } |
.rcsim_get_type_signed ⇒ Object
Get the signed type.
180 181 182 183 184 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 180 VALUE rcsim_get_type_signed(VALUE mod) { VALUE res; rcsim_to_value(TypeS,get_type_signed(),res); return res; } |
.rcsim_get_type_vector(baseV, numV) ⇒ Object
Get a vector type.
187 188 189 190 191 192 193 194 195 196 197 198 199 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 187
VALUE rcsim_get_type_vector(VALUE mod, VALUE baseV, VALUE numV) {
/* Get the base type. */
Type base;
value_to_rcsim(TypeS,baseV,base);
/* Get the number of elements. */
unsigned long long num = NUM2LL(numV);
/* Get the type. */
Type type = get_type_vector(base,num);
/* Return it as a Ruby VALUE. */
VALUE res;
rcsim_to_value(TypeS,type,res);
return res;
}
|
.rcsim_load_c(codeV, libnameV, funcnameV) ⇒ Object
Loads a C program dynamic library (called from HDLRuby) for a code.
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 478
VALUE rcsim_load_c(VALUE mod, VALUE codeV, VALUE libnameV, VALUE funcnameV) {
char* libname;
char* funcname;
Code code;
void* handle;
libname = StringValueCStr(libnameV);
funcname = StringValueCStr(funcnameV);
/* Get the code. */
value_to_rcsim(CodeS,codeV,code);
/* Load the library. */
handle = dlopen(libname,RTLD_NOW | RTLD_GLOBAL);
if (handle == NULL) {
fprintf(stderr,"Unable to open program: %s\n",dlerror());
exit(-1);
}
code->function = dlsym(handle,funcname);
if (code->function == NULL) {
fprintf(stderr,"Unable to get function: %s\n",code->name);
exit(-1);
}
return codeV;
}
|
.rcsim_main(systemTV, name, outmodeV) ⇒ Object
Starts the C-Ruby hybrid simulation. @param systemTV the top system type. @param name the name of the simulation. @param outmode tells which output mode is used: 0: standard 1: mute 2: vcd
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1733
VALUE rcsim_main(VALUE mod, VALUE systemTV, VALUE name, VALUE outmodeV) {
/* Get the C system type from the Ruby value. */
SystemT systemT;
value_to_rcsim(SystemTS,systemTV,systemT);
/* Set it as the top of the simulator. */
top_system = systemT;
/* Enable it. */
set_enable_system(systemT,1);
/* Get the output mode. */
int outmode = NUM2INT(outmodeV);
/* Starts the simulation. */
switch(outmode) {
case 0: hruby_sim_core(StringValueCStr(name),init_default_visualizer,-1);
break;
case 1: hruby_sim_core(StringValueCStr(name),init_mute_visualizer,-1);
break;
case 2: hruby_sim_core(StringValueCStr(name),init_vcd_visualizer,-1);
break;
default:hruby_sim_core(StringValueCStr(name),init_default_visualizer,-1);
}
return systemTV;
}
|
.rcsim_make_behavior(timed) ⇒ Object
Creating a behavior C object.
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 259
VALUE rcsim_make_behavior(VALUE mod, VALUE timed) {
// printf("rcsim_make_behavior\n");
/* Allocates the behavior. */
Behavior behavior = (Behavior)malloc(sizeof(BehaviorS));
// printf("behavior=%p\n",behavior);
/* Set it up. */
behavior->kind = BEHAVIOR;
behavior->owner = NULL;
behavior->num_events = 0;
behavior->events = NULL;
behavior->block = NULL;
behavior->enabled = 0;
behavior->activated = 0;
if (TYPE(timed) == T_TRUE) {
/* The behavior is timed, set it up and register it. */
behavior->timed = 1;
register_timed_behavior(behavior);
} else {
/* The behavior is not timed. */
behavior->timed = 0;
/* It must be initialized though. */
register_init_behavior(behavior);
}
behavior->active_time = 0;
behavior->thread = NULL;
/* Returns the C behavior embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(BehaviorS,behavior,res);
return res;
}
|
.rcsim_make_binary(type, operator, left, right) ⇒ Object
Creating a binary value C object.
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 770
VALUE rcsim_make_binary(VALUE mod, VALUE type, VALUE operator, VALUE left, VALUE right) {
// printf("rcsim_make_binary\n");
/* Allocates the binary. */
Binary binary = (Binary)malloc(sizeof(BinaryS));
// printf("binary=%p\n",binary);
/* Set it up. */
binary->kind = BINARY;
binary->owner = NULL;
value_to_rcsim(TypeS,type,binary->type);
switch(sym_to_char(operator)) {
case (unsigned char)'+': binary->oper = add_value; break;
case (unsigned char)'-': binary->oper = sub_value; break;
case (unsigned char)'*': binary->oper = mul_value; break;
case (unsigned char)'/': binary->oper = div_value; break;
case (unsigned char)'%': binary->oper = mod_value; break;
case (unsigned char)'&': binary->oper = and_value; break;
case (unsigned char)'|': binary->oper = or_value; break;
case (unsigned char)'^': binary->oper = xor_value; break;
case (unsigned char)('<'+'<'*2): binary->oper = shift_left_value; break;
case (unsigned char)('>'+'>'*2): binary->oper = shift_right_value; break;
case (unsigned char)('='+'='*2): binary->oper = equal_value_c; break;
case (unsigned char)('!'+'='*2): binary->oper = not_equal_value_c; break;
case (unsigned char)'<': binary->oper = lesser_value; break;
case (unsigned char)('<'+'='*2): binary->oper = lesser_equal_value; break;
case (unsigned char)'>': binary->oper = greater_value; break;
case (unsigned char)('>'+'='*2): binary->oper = greater_equal_value; break;
default: perror("Invalid operator for binary.");
}
value_to_rcsim(ExpressionS,left,binary->left);
value_to_rcsim(ExpressionS,right,binary->right);
/* Returns the C binary embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(BinaryS,binary,res);
return res;
}
|
.rcsim_make_block(modeV) ⇒ Object
Creating a block C object.
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 661
VALUE rcsim_make_block(VALUE mod, VALUE modeV) {
// printf("rcsim_make_block\n");
/* Allocates the block. */
Block block = (Block)malloc(sizeof(BlockS));
// printf("block=%p\n",block);
/* Set it up. */
block->kind = BLOCK;
block->owner = NULL;
block->name = NULL;
block->num_inners = 0;
block->inners = NULL;
block->num_stmnts = 0;
block->stmnts = NULL;
block->mode = SYM2ID(modeV) == id_PAR ? PAR : SEQ;
/* Returns the C block embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(BlockS,block,res);
return res;
}
|
.rcsim_make_cast(type, child) ⇒ Object
Creating a cast C object.
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 731
VALUE rcsim_make_cast(VALUE mod, VALUE type, VALUE child) {
// printf("rcsim_make_cast\n");
/* Allocates the cast. */
Cast cast = (Cast)malloc(sizeof(CastS));
// printf("cast=%p\n",cast);
/* Set it up. */
cast->kind = CAST;
cast->owner = NULL;
value_to_rcsim(TypeS,type,cast->type);
value_to_rcsim(ExpressionS,child,cast->child);
/* Returns the C cast embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(CastS,cast,res);
return res;
}
|
.rcsim_make_code(lang, funcname) ⇒ Object
Creating a system code C object. Note: HDLRuby Code object are actually refactored to Program object, but the low-level simulation still use Code as data structure. Hence, it may change in the future.
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 395
VALUE rcsim_make_code(VALUE mod, VALUE lang, VALUE funcname) {
// printf("rcsim_make_code\n");
/* Allocates the code. */
Code code = (Code)malloc(sizeof(CodeS));
// printf("code=%p\n",code);
/* Set it up. */
code->kind = CODE;
code->owner = NULL;
code->name = strdup(StringValueCStr(funcname));
// printf("code->name=%p\n",code->name);
code->num_events = 0;
code->events = NULL;
code->function = NULL;
char* langStr = StringValueCStr(lang);
if(strncmp(langStr,"ruby",4) == 0) {
/* Ruby function. */
code->function = ruby_function_wrap;
} else if (strncmp(langStr,"c",1) == 0) {
/* C or C-compatible dynamically compiled code: it will be loaded
* afterward */
code->function = NULL;
} else {
/* Other language function. */
fprintf(stderr,"Unsupported language.");
exit(-1);
}
code->enabled = 0;
code->activated = 0;
/* Returns the C code embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(CodeS,code,res);
return res;
}
|
.rcsim_make_concat(type, dirV) ⇒ Object
Creating a concat C object.
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 826
VALUE rcsim_make_concat(VALUE mod, VALUE type, VALUE dirV) {
// printf("rcsim_make_concat\n");
/* Allocates the concat. */
Concat concat = (Concat)malloc(sizeof(ConcatS));
// printf("concat=%p\n",concat);
/* Set it up. */
concat->kind = CONCAT;
concat->owner = NULL;
value_to_rcsim(TypeS,type,concat->type);
concat->num_exprs = 0;
concat->exprs = NULL;
concat->dir = rb_id2name(SYM2ID(dirV))[0]=='l' ? 1 : 0;
/* Returns the C concat embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(ConcatS,concat,res);
return res;
}
|
.rcsim_make_event(typeV, sigV) ⇒ Object
Creating an event C object.
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 292
VALUE rcsim_make_event(VALUE mod, VALUE typeV, VALUE sigV) {
// printf("rcsim_make_event\n");
/* Allocates the event. */
Event event = (Event)malloc(sizeof(EventS));
// printf("event=%p\n",event);
/* Set it up. */
event->kind = EVENT;
event->owner = NULL;
/* Its type. */
ID id_edge = SYM2ID(typeV);
if (id_edge == id_POSEDGE) { event->edge = POSEDGE; }
else if (id_edge == id_NEGEDGE) { event->edge = NEGEDGE; }
else if (id_edge == id_ANYEDGE) { event->edge = ANYEDGE; }
else { perror("Invalid edge type."); }
/* Its signal. */
value_to_rcsim(SignalIS,sigV,event->signal);
/* Returns the C event embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(EventS,event,res);
return res;
}
|
.rcsim_make_hcase(valueV, defoltV) ⇒ Object
Creating a hardware case C object.
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 637
VALUE rcsim_make_hcase(VALUE mod, VALUE valueV, VALUE defoltV) {
// printf("rcsim_make_hcase\n");
/* Allocates the hardware case. */
HCase hcase = (HCase)malloc(sizeof(HCaseS));
// printf("hcase=%p\n",hcase);
/* Set it up. */
hcase->kind = HCASE;
hcase->owner = NULL;
value_to_rcsim(ExpressionS,valueV,hcase->value);
hcase->num_whens = 0;
hcase->matches = NULL;
hcase->stmnts = NULL;
if (TYPE(defoltV) == T_NIL)
hcase->defolt = NULL;
else
value_to_rcsim(StatementS,defoltV,hcase->defolt);
/* Returns the C hardware case embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(HCaseS,hcase,res);
return res;
}
|
.rcsim_make_hif(conditionV, yesV, noV) ⇒ Object
Creating a hardware if C object.
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 612
VALUE rcsim_make_hif(VALUE mod, VALUE conditionV, VALUE yesV, VALUE noV) {
// printf("rcsim_make_hif\n");
/* Allocates the hardware if. */
HIf hif = (HIf)malloc(sizeof(HIfS));
// printf("hif=%p\n",hif);
/* Set it up. */
hif->kind = HIF;
hif->owner = NULL;
value_to_rcsim(ExpressionS,conditionV,hif->condition);
value_to_rcsim(StatementS,yesV,hif->yes);
if (TYPE(noV) == T_NIL)
hif->no = NULL;
else
value_to_rcsim(StatementS,noV,hif->no);
hif->num_noifs = 0;
hif->noconds = NULL;
hif->nostmnts = NULL;
/* Returns the C hardware if embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(HIfS,hif,res);
return res;
}
|
.rcsim_make_print ⇒ Object
Creating a print C object.
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 525
VALUE rcsim_make_print(VALUE mod) {
// printf("rcsim_make_print\n");
/* Allocates the print. */
Print print = (Print)malloc(sizeof(PrintS));
// printf("print=%p\n",print);
/* Set it up. */
print->kind = PRINT;
print->owner = NULL;
print->num_args = 0;
print->args = NULL;
/* Returns the C print embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(PrintS,print,res);
return res;
}
|
.rcsim_make_refConcat(type, dirV) ⇒ Object
Creating a ref concat C object.
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 845
VALUE rcsim_make_refConcat(VALUE mod, VALUE type, VALUE dirV) {
// printf("rcsim_make_refConcat\n");
/* Allocates the ref concat. */
RefConcat refConcat = (RefConcat)malloc(sizeof(RefConcatS));
// printf("refConcat=%p\n",refConcat);
/* Set it up. */
refConcat->kind = REF_CONCAT;
refConcat->owner = NULL;
value_to_rcsim(TypeS,type,refConcat->type);
refConcat->num_refs = 0;
refConcat->refs = NULL;
refConcat->dir = rb_id2name(SYM2ID(dirV))[0]=='l' ? 0 : 1;
/* Returns the C ref concat embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(RefConcatS,refConcat,res);
return res;
}
|
.rcsim_make_refIndex(type, index, ref) ⇒ Object
Creating a ref index C object.
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 864
VALUE rcsim_make_refIndex(VALUE mod, VALUE type, VALUE index, VALUE ref) {
// printf("rcsim_make_refIndex\n");
/* Allocates the ref index. */
RefIndex refIndex = (RefIndex)malloc(sizeof(RefIndexS));
// printf("refIndex=%p\n",refIndex);
/* Set it up. */
refIndex->kind = REF_INDEX;
refIndex->owner = NULL;
value_to_rcsim(TypeS,type,refIndex->type);
value_to_rcsim(ExpressionS,index,refIndex->index);
value_to_rcsim(ReferenceS,ref,refIndex->ref);
/* Returns the C ref index embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(RefIndexS,refIndex,res);
return res;
}
|
.rcsim_make_refRange(type, first, last, ref) ⇒ Object
Creating a ref range C object.
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 882
VALUE rcsim_make_refRange(VALUE mod, VALUE type, VALUE first, VALUE last, VALUE ref) {
// printf("rcsim_make_refRange\n");
/* Allocates the ref range. */
RefRangeE refRange = (RefRangeE)malloc(sizeof(RefRangeES));
// printf("refRange=%p\n",refRange);
/* Set it up. */
refRange->kind = REF_RANGE;
refRange->owner = NULL;
value_to_rcsim(TypeS,type,refRange->type);
value_to_rcsim(ExpressionS,first,refRange->first);
value_to_rcsim(ExpressionS,last,refRange->last);
value_to_rcsim(ReferenceS,ref,refRange->ref);
/* Returns the C ref range embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(RefRangeES,refRange,res);
return res;
}
|
.rcsim_make_scope(name) ⇒ Object
Creating a scope C object.
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 231
VALUE rcsim_make_scope(VALUE mod, VALUE name) {
// printf("rcsim_make_scope\n");
/* Allocates the scope. */
Scope scope = (Scope)malloc(sizeof(ScopeS));
// printf("scope=%p\n",scope);
/* Set it up. */
scope->kind = SCOPE;
scope->owner = NULL;
scope->name = strdup(StringValueCStr(name));
// printf("scope->name=%p\n",scope->name);
scope->num_systemIs = 0;
scope->systemIs = NULL;
scope->num_inners = 0;
scope->inners = NULL;
scope->num_scopes = 0;
scope->scopes = NULL;
scope->num_behaviors = 0;
scope->behaviors = NULL;
scope->num_codes = 0;
scope->codes = NULL;
/* Returns the C scope embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(ScopeS,scope,res);
return res;
}
|
.rcsim_make_select(type, sel) ⇒ Object
Creating a select C object.
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 807
VALUE rcsim_make_select(VALUE mod, VALUE type, VALUE sel) {
// printf("rcsim_make_select\n");
/* Allocates the select. */
Select select = (Select)malloc(sizeof(SelectS));
// printf("select=%p\n",select);
/* Set it up. */
select->kind = SELECT;
select->owner = NULL;
value_to_rcsim(TypeS,type,select->type);
value_to_rcsim(ExpressionS,sel,select->select);
select->num_choices = 0;
select->choices = NULL;
/* Returns the C select embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(SelectS,select,res);
return res;
}
|
.rcsim_make_signal(name, type) ⇒ Object
Creating a signal C object.
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 318
VALUE rcsim_make_signal(VALUE mod, VALUE name, VALUE type) {
// printf("rcsim_make_signal\n");
/* Allocates the signal. */
SignalI signal = (SignalI)malloc(sizeof(SignalIS));
signal->id = last_signal_id++;
// printf("signal=%p\n",signal);
/* Set it up. */
signal->kind = SIGNALI;
signal->owner = NULL;
signal->name = strdup(StringValueCStr(name));
// printf("signal->name=%p\n",signal->name);
// printf("Creating signal named=%s\n",signal->name);
value_to_rcsim(TypeS,type,signal->type);
// printf("&type=%p type=%p width=%llu\n",&(signal->type),signal->type,type_width(signal->type));
signal->num_signals= 0;
signal->signals = NULL;
signal->c_value = make_value(signal->type,0);
// printf("signal->c_value=%p\n",signal->c_value);
signal->c_value->signal = signal;
// printf("c_value=%p type=%p\n",signal->c_value,signal->c_value->type);
// printf("c_value type width=%llu\n",type_width(signal->c_value->type));
signal->f_value = make_value(signal->type,0);
// printf("signal->f_value=%p\n",signal->f_value);
signal->f_value->signal = signal;
signal->fading = 1; /* Initially the signal can be overwritten by anything.*/
signal->num_any = 0;
signal->any = NULL;
// signal->any = (SignalI*)calloc(32,sizeof(SignalI));
signal->num_pos = 0;
signal->pos = NULL;
// signal->pos = (SignalI*)calloc(32,sizeof(SignalI));
signal->num_neg = 0;
signal->neg = NULL;
// signal->neg = (SignalI*)calloc(32,sizeof(SignalI));
/* Register the signal. */
register_signal(signal);
/* Returns the C signal embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(SignalIS,signal,res);
return res;
}
|
.rcsim_make_stringE(strV) ⇒ Object
Creating a character string C object.
902 903 904 905 906 907 908 909 910 911 912 913 914 915 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 902
VALUE rcsim_make_stringE(VALUE mod, VALUE strV) {
// printf("rcsim_make_stringE\n");
/* Allocates the string. */
StringE stringE = (StringE)malloc(sizeof(StringES));
// printf("stringE=%p\n",stringE);
/* Set it up. */
stringE->kind = STRINGE;
stringE->owner = NULL;
stringE->str = strdup(StringValueCStr(strV));
/* Returns the C character string embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(StringES,stringE,res);
return res;
}
|
.rcsim_make_systemI(name, systemT) ⇒ Object
Creating a system instance C object.
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 363
VALUE rcsim_make_systemI(VALUE mod, VALUE name, VALUE systemT) {
// printf("rcsim_make_systemI\n");
/* Allocates the system instance. */
SystemI systemI = (SystemI)malloc(sizeof(SystemIS));
// printf("systemI=%p\n",systemI);
/* Set it up. */
systemI->kind = SYSTEMI;
systemI->owner = NULL;
systemI->name = strdup(StringValueCStr(name));
// printf("systemI->name=%p\n",systemI->name);
// /* Name is made empty since redundant with Eigen system. */
// systemI->name = "";
value_to_rcsim(SystemTS,systemT,systemI->system);
systemI->num_systems = 1;
systemI->systems = (SystemT*)malloc(sizeof(SystemT[1]));
// printf("systemI->systems=%p\n",systemI->systems); fflush(stdout);
systemI->systems[0] = systemI->system;
/* Configure the systemI to execute the default systemT. */
configure(systemI,0);
/* Returns the C system instance embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(SystemIS,systemI,res);
return res;
}
|
.rcsim_make_systemT(name) ⇒ Object
Creating a systemT C object.
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 205
VALUE rcsim_make_systemT(VALUE mod, VALUE name) {
// printf("rcsim_make_systemT\n");
/* Allocates the systemT. */
SystemT systemT = (SystemT)malloc(sizeof(SystemTS));
// printf("systemT=%p\n",systemT);
/* Set it up. */
systemT->kind = SYSTEMT;
systemT->owner = NULL;
systemT->name = strdup(StringValueCStr(name));
// printf("systemT->name=%p\n",systemT->name);
systemT->num_inputs = 0;
systemT->inputs = NULL;
systemT->num_outputs = 0;
systemT->outputs = NULL;
systemT->num_inouts = 0;
systemT->inouts = NULL;
systemT->scope = NULL;
// printf("Created systemT with kind=%d and name=%s\n",systemT->kind,systemT->name);
/* Returns the C systemT embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(SystemTS,systemT,res);
return res;
}
|
.rcsim_make_timeRepeat(numberV, statementV) ⇒ Object
Creating a time repeat C object.
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 573
VALUE rcsim_make_timeRepeat(VALUE mod, VALUE numberV, VALUE statementV) {
// printf("rcsim_make_timeRepeat\n"); fflush(stdout);
/* Allocates the time repeat. */
TimeRepeat timeRepeat = (TimeRepeat)malloc(sizeof(TimeRepeatS));
// printf("timeRepeat=%p\n",timeRepeat); fflush(stdout);
/* Set it up. */
timeRepeat->kind = TIME_REPEAT;
timeRepeat->owner = NULL;
/* Get and set the number of repeatition. */
long long number;
number = NUM2LL(numberV);
// printf("number=%lld\n",number); fflush(stdout);
timeRepeat->number = number;
/* Get and set the statement. */
value_to_rcsim(StatementS,statementV,timeRepeat->statement);
/* Returns the C time wait embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(TimeRepeatS,timeRepeat,res);
return res;
}
|
.rcsim_make_timeTerminate ⇒ Object
Creating a time terminate C object.
596 597 598 599 600 601 602 603 604 605 606 607 608 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 596
VALUE rcsim_make_timeTerminate(VALUE mod) {
// printf("rcsim_make_timeTerminate\n");
/* Allocates the time terminate. */
TimeTerminate timeTerminate = (TimeTerminate)malloc(sizeof(TimeTerminateS));
// printf("timeTerminate=%p\n",timeTerminate);
/* Set it up. */
timeTerminate->kind = TIME_TERMINATE;
timeTerminate->owner = NULL;
/* Returns the C time terminate embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(TimeTerminateS,timeTerminate,res);
return res;
}
|
.rcsim_make_timeWait(unitV, delayV) ⇒ Object
Creating a time wait C object.
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 543
VALUE rcsim_make_timeWait(VALUE mod, VALUE unitV, VALUE delayV) {
// printf("rcsim_make_timeWait\n");
/* Allocates the time wait. */
TimeWait timeWait = (TimeWait)malloc(sizeof(TimeWaitS));
// printf("timeWait=%p\n",timeWait);
/* Set it up. */
timeWait->kind = TIME_WAIT;
timeWait->owner = NULL;
/* Compute the delay. */
unsigned long long delay;
delay = NUM2LL(delayV);
/* Adjust the delay depending on the unit. */
const char* unit = rb_id2name(SYM2ID(unitV));
switch(unit[0]) {
case 'p': /* Ok as is. */ break;
case 'n': delay *= 1000; break;
case 'u': delay *= 1000000; break;
case 'm': delay *= 1000000000; break;
case 's': delay *= 1000000000000; break;
default:
perror("Invalid delay unit.");
}
timeWait->delay = delay;
/* Returns the C time wait embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(TimeWaitS,timeWait,res);
return res;
}
|
.rcsim_make_transmit(left, right) ⇒ Object
Creating a transmit C object.
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 507
VALUE rcsim_make_transmit(VALUE mod, VALUE left, VALUE right) {
// printf("rcsim_make_transmit\n");
/* Allocates the transmit. */
Transmit transmit = (Transmit)malloc(sizeof(TransmitS));
// printf("transmit=%p\n",transmit);
/* Set it up. */
transmit->kind = TRANSMIT;
transmit->owner = NULL;
value_to_rcsim(ReferenceS,left,transmit->left);
value_to_rcsim(ExpressionS,right,transmit->right);
/* Returns the C transmit embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(TransmitS,transmit,res);
return res;
}
|
.rcsim_make_unary(type, operator, child) ⇒ Object
Creating a unary value C object.
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 748
VALUE rcsim_make_unary(VALUE mod, VALUE type, VALUE operator, VALUE child) {
// printf("rcsim_make_unary\n");
/* Allocates the unary. */
Unary unary= (Unary)malloc(sizeof(UnaryS));
// printf("unary=%p\n",unary);
/* Set it up. */
unary->kind = UNARY;
unary->owner = NULL;
value_to_rcsim(TypeS,type,unary->type);
switch(sym_to_char(operator)) {
case (unsigned char)'~': unary->oper = not_value; break;
case (unsigned char)('-'+'@'*2): unary->oper = neg_value; break;
default: perror("Invalid operator for unary.");
}
value_to_rcsim(ExpressionS,child,unary->child);
/* Returns the C unary embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(UnaryS,unary,res);
return res;
}
|
.rcsim_make_value_bitstring(typeV, contentV) ⇒ Object
Creating a bitstring value C object.
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 705
VALUE rcsim_make_value_bitstring(VALUE mod, VALUE typeV, VALUE contentV) {
// printf("rcsim_make_value_bitstring\n");
/* Get the type. */
Type type;
value_to_rcsim(TypeS,typeV,type);
/* Create the value. */
Value value = make_value(type,0);
// printf("value=%p\n",value);
// printf("Created from bitstring value=%p with type=%p\n",value,value->type);
// printf("and width=%llu\n",type_width(value->type));
/* Set it to bitstring. */
value->numeric = 0;
/* Generate the string of the content. */
char* str = StringValueCStr(contentV);
value->capacity = strlen(str)+1;
value->data_str = calloc(value->capacity,sizeof(char));
// printf("value->data_str=%p\n",value->data_str);
strcpy(value->data_str,str);
/* Returns the C value embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(ValueS,value,res);
return res;
}
|
.rcsim_make_value_numeric(typeV, contentV) ⇒ Object
Creating a numeric value C object.
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 683
VALUE rcsim_make_value_numeric(VALUE mod, VALUE typeV, VALUE contentV) {
// printf("rcsim_make_value_numeric\n");
/* Get the type. */
Type type;
value_to_rcsim(TypeS,typeV,type);
/* Create the value. */
Value value = make_value(type,0);
// printf("value=%p\n",value);
/* Set it to numeric. */
value->numeric = 1;
value->capacity = 0;
value->data_str = NULL;
value->data_int = NUM2LL(contentV);
// printf("value->data_int=%lld\n",value->data_int);
/* Returns the C value embedded into a ruby VALUE. */
VALUE res;
rcsim_to_value(ValueS,value,res);
return res;
}
|
.rcsim_set_behavior_block(behaviorV, blockV) ⇒ Object
Sets the block for a C behavior.
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1570
VALUE rcsim_set_behavior_block(VALUE mod, VALUE behaviorV, VALUE blockV) {
/* Get the C behavior from the Ruby value. */
Behavior behavior;
value_to_rcsim(BehaviorS,behaviorV,behavior);
/* Get the C block from the Ruby value. */
Block block;
value_to_rcsim(BlockS,blockV,block);
/* Set the block. */
behavior->block = block;
return behaviorV;
}
|
.rcsim_set_owner(objV, ownerV) ⇒ Object
Sets the owner for a C simulation object.
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1544
VALUE rcsim_set_owner(VALUE mod, VALUE objV, VALUE ownerV) {
/* Get the C object from the Ruby value. */
Object obj;
value_to_rcsim(ObjectS,objV,obj);
/* Get the C owner from the Ruby value. */
Object owner;
value_to_rcsim(ObjectS,ownerV,owner);
/* Set the owner. */
obj->owner = owner;
return objV;
}
|
.rcsim_set_signal_value(signalV, exprV) ⇒ Object
Sets the value for a C signal. NOTE: for initialization only (the simulator events are not updated), otherwise, please use rcsim_transmit_to_signal or rc_sim_transmit_to_signal_seq.
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1586
VALUE rcsim_set_signal_value(VALUE mod, VALUE signalV, VALUE exprV) {
/* Get the C signal from the Ruby value. */
SignalI signal;
value_to_rcsim(SignalIS,signalV,signal);
// printf("rc_sim_set_signal_value for signal=%s\n",signal->name);
/* Get the C expression from the Ruby value. */
Expression expr;
value_to_rcsim(ExpressionS,exprV,expr);
/* Compute the value from it. */
Value value = get_value();
value = calc_expression(expr,value);
/* Copies the value. */
signal->f_value = copy_value(value,signal->f_value);
signal->c_value = copy_value(value,signal->c_value);
free_value();
return signalV;
}
|
.rcsim_set_systemT_scope(systemTV, scopeV) ⇒ Object
Sets the scope for a C system type.
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1557
VALUE rcsim_set_systemT_scope(VALUE mod, VALUE systemTV, VALUE scopeV) {
/* Get the C system type from the Ruby value. */
SystemT systemT;
value_to_rcsim(SystemTS,systemTV,systemT);
/* Get the C scope from the Ruby value. */
Scope scope;
value_to_rcsim(ScopeS,scopeV,scope);
/* Set the scope. */
systemT->scope = scope;
return systemTV;
}
|
.rcsim_transmit_fixnum_to_signal_seq(signalV, valR) ⇒ Object
Transmit a Ruby fixnum to a signal in a non-blocking fashion. NOTE: the simulator events are updated.
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 |
# File 'ext/hruby_sim/hruby_rcsim_build.c', line 1697
VALUE rcsim_transmit_fixnum_to_signal_seq(VALUE mod, VALUE signalV, VALUE valR) {
/* Get the C signal from the Ruby value. */
SignalI signal;
value_to_rcsim(SignalIS,signalV,signal);
/* Compute the simualtion value from valR. */
Value value = get_value();
value->type = signal->type;
value->numeric = 1;
value->data_int = FIX2LONG(valR);
/* Transmit it. */
transmit_to_signal_seq(value, signal);
/* End, return the transmitted expression. */
return valR;
}
|