Class: Aws::SageMaker::Types::TrainingJob
- Inherits:
-
Struct
- Object
- Struct
- Aws::SageMaker::Types::TrainingJob
- Includes:
- Aws::Structure
- Defined in:
- lib/aws-sdk-sagemaker/types.rb
Overview
Contains information about a training job.
Constant Summary collapse
- SENSITIVE =
[]
Instance Attribute Summary collapse
-
#algorithm_specification ⇒ Types::AlgorithmSpecification
Information about the algorithm used for training, and algorithm metadata.
-
#auto_ml_job_arn ⇒ String
The Amazon Resource Name (ARN) of the job.
-
#billable_time_in_seconds ⇒ Integer
The billable time in seconds.
-
#checkpoint_config ⇒ Types::CheckpointConfig
Contains information about the output location for managed spot training checkpoint data.
-
#creation_time ⇒ Time
A timestamp that indicates when the training job was created.
-
#debug_hook_config ⇒ Types::DebugHookConfig
Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths.
-
#debug_rule_configurations ⇒ Array<Types::DebugRuleConfiguration>
Information about the debug rule configuration.
-
#debug_rule_evaluation_statuses ⇒ Array<Types::DebugRuleEvaluationStatus>
Information about the evaluation status of the rules for the training job.
-
#enable_inter_container_traffic_encryption ⇒ Boolean
To encrypt all communications between ML compute instances in distributed training, choose ‘True`.
-
#enable_managed_spot_training ⇒ Boolean
When true, enables managed spot training using Amazon EC2 Spot instances to run training jobs instead of on-demand instances.
-
#enable_network_isolation ⇒ Boolean
If the ‘TrainingJob` was created with network isolation, the value is set to `true`.
-
#environment ⇒ Hash<String,String>
The environment variables to set in the Docker container.
-
#experiment_config ⇒ Types::ExperimentConfig
Associates a SageMaker job as a trial component with an experiment and trial.
-
#failure_reason ⇒ String
If the training job failed, the reason it failed.
-
#final_metric_data_list ⇒ Array<Types::MetricData>
A list of final metric values that are set when the training job completes.
-
#hyper_parameters ⇒ Hash<String,String>
Algorithm-specific parameters.
-
#input_data_config ⇒ Array<Types::Channel>
An array of ‘Channel` objects that describes each data input channel.
-
#labeling_job_arn ⇒ String
The Amazon Resource Name (ARN) of the labeling job.
-
#last_modified_time ⇒ Time
A timestamp that indicates when the status of the training job was last modified.
-
#model_artifacts ⇒ Types::ModelArtifacts
Information about the Amazon S3 location that is configured for storing model artifacts.
-
#output_data_config ⇒ Types::OutputDataConfig
The S3 path where model artifacts that you configured when creating the job are stored.
-
#profiler_config ⇒ Types::ProfilerConfig
Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.
-
#resource_config ⇒ Types::ResourceConfig
Resources, including ML compute instances and ML storage volumes, that are configured for model training.
-
#retry_strategy ⇒ Types::RetryStrategy
The number of times to retry the job when the job fails due to an ‘InternalServerError`.
-
#role_arn ⇒ String
The Amazon Web Services Identity and Access Management (IAM) role configured for the training job.
-
#secondary_status ⇒ String
Provides detailed information about the state of the training job.
-
#secondary_status_transitions ⇒ Array<Types::SecondaryStatusTransition>
A history of all of the secondary statuses that the training job has transitioned through.
-
#stopping_condition ⇒ Types::StoppingCondition
Specifies a limit to how long a model training job can run.
-
#tags ⇒ Array<Types::Tag>
An array of key-value pairs.
-
#tensor_board_output_config ⇒ Types::TensorBoardOutputConfig
Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.
-
#training_end_time ⇒ Time
Indicates the time when the training job ends on training instances.
-
#training_job_arn ⇒ String
The Amazon Resource Name (ARN) of the training job.
-
#training_job_name ⇒ String
The name of the training job.
-
#training_job_status ⇒ String
The status of the training job.
-
#training_start_time ⇒ Time
Indicates the time when the training job starts on training instances.
-
#training_time_in_seconds ⇒ Integer
The training time in seconds.
-
#tuning_job_arn ⇒ String
The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.
-
#vpc_config ⇒ Types::VpcConfig
A [VpcConfig] object that specifies the VPC that this training job has access to.
Instance Attribute Details
#algorithm_specification ⇒ Types::AlgorithmSpecification
Information about the algorithm used for training, and algorithm metadata.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#auto_ml_job_arn ⇒ String
The Amazon Resource Name (ARN) of the job.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#billable_time_in_seconds ⇒ Integer
The billable time in seconds.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#checkpoint_config ⇒ Types::CheckpointConfig
Contains information about the output location for managed spot training checkpoint data.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#creation_time ⇒ Time
A timestamp that indicates when the training job was created.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#debug_hook_config ⇒ Types::DebugHookConfig
Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the ‘DebugHookConfig` parameter, see [Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job].
[1]: docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#debug_rule_configurations ⇒ Array<Types::DebugRuleConfiguration>
Information about the debug rule configuration.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#debug_rule_evaluation_statuses ⇒ Array<Types::DebugRuleEvaluationStatus>
Information about the evaluation status of the rules for the training job.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#enable_inter_container_traffic_encryption ⇒ Boolean
To encrypt all communications between ML compute instances in distributed training, choose ‘True`. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#enable_managed_spot_training ⇒ Boolean
When true, enables managed spot training using Amazon EC2 Spot instances to run training jobs instead of on-demand instances. For more information, see [Managed Spot Training].
[1]: docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#enable_network_isolation ⇒ Boolean
If the ‘TrainingJob` was created with network isolation, the value is set to `true`. If network isolation is enabled, nodes can’t communicate beyond the VPC they run in.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#environment ⇒ Hash<String,String>
The environment variables to set in the Docker container.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#experiment_config ⇒ Types::ExperimentConfig
Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:
- CreateProcessingJob][1
- CreateTrainingJob][2
- CreateTransformJob][3
[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html [2]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html [3]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#failure_reason ⇒ String
If the training job failed, the reason it failed.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#final_metric_data_list ⇒ Array<Types::MetricData>
A list of final metric values that are set when the training job completes. Used only if the training job was configured to use metrics.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#hyper_parameters ⇒ Hash<String,String>
Algorithm-specific parameters.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#input_data_config ⇒ Array<Types::Channel>
An array of ‘Channel` objects that describes each data input channel.
Your input must be in the same Amazon Web Services region as your training job.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#labeling_job_arn ⇒ String
The Amazon Resource Name (ARN) of the labeling job.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#last_modified_time ⇒ Time
A timestamp that indicates when the status of the training job was last modified.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#model_artifacts ⇒ Types::ModelArtifacts
Information about the Amazon S3 location that is configured for storing model artifacts.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#output_data_config ⇒ Types::OutputDataConfig
The S3 path where model artifacts that you configured when creating the job are stored. SageMaker creates subfolders for model artifacts.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#profiler_config ⇒ Types::ProfilerConfig
Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#resource_config ⇒ Types::ResourceConfig
Resources, including ML compute instances and ML storage volumes, that are configured for model training.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#retry_strategy ⇒ Types::RetryStrategy
The number of times to retry the job when the job fails due to an ‘InternalServerError`.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#role_arn ⇒ String
The Amazon Web Services Identity and Access Management (IAM) role configured for the training job.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#secondary_status ⇒ String
Provides detailed information about the state of the training job. For detailed information about the secondary status of the training job, see ‘StatusMessage` under [SecondaryStatusTransition].
SageMaker provides primary statuses and secondary statuses that apply to each of them:
InProgress : * ‘Starting` - Starting the training job.
* `Downloading` - An optional stage for algorithms that support
`File` training input mode. It indicates that data is being
downloaded to the ML storage volumes.
* `Training` - Training is in progress.
* `Uploading` - Training is complete and the model artifacts are
being uploaded to the S3 location.
Completed : * ‘Completed` - The training job has completed.
^
Failed : * ‘Failed` - The training job has failed. The reason for the
failure is returned in the `FailureReason` field of
`DescribeTrainingJobResponse`.
^
Stopped : * ‘MaxRuntimeExceeded` - The job stopped because it exceeded the
maximum allowed runtime.
* `Stopped` - The training job has stopped.
Stopping : * ‘Stopping` - Stopping the training job.
^
Valid values for ‘SecondaryStatus` are subject to change.
We no longer support the following secondary statuses:
-
‘LaunchingMLInstances`
-
‘PreparingTrainingStack`
-
‘DownloadingTrainingImage`
[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_SecondaryStatusTransition.html
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#secondary_status_transitions ⇒ Array<Types::SecondaryStatusTransition>
A history of all of the secondary statuses that the training job has transitioned through.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#stopping_condition ⇒ Types::StoppingCondition
Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, SageMaker sends the algorithm the ‘SIGTERM` signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#tags ⇒ Array<Types::Tag>
An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see [Tagging Amazon Web Services Resources].
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#tensor_board_output_config ⇒ Types::TensorBoardOutputConfig
Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#training_end_time ⇒ Time
Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of ‘TrainingStartTime` and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when SageMaker detects a job failure.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#training_job_arn ⇒ String
The Amazon Resource Name (ARN) of the training job.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#training_job_name ⇒ String
The name of the training job.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#training_job_status ⇒ String
The status of the training job.
Training job statuses are:
-
‘InProgress` - The training is in progress.
-
‘Completed` - The training job has completed.
-
‘Failed` - The training job has failed. To see the reason for the failure, see the `FailureReason` field in the response to a `DescribeTrainingJobResponse` call.
-
‘Stopping` - The training job is stopping.
-
‘Stopped` - The training job has stopped.
For more detailed information, see ‘SecondaryStatus`.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#training_start_time ⇒ Time
Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of ‘TrainingEndTime`. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#training_time_in_seconds ⇒ Integer
The training time in seconds.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#tuning_job_arn ⇒ String
The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |
#vpc_config ⇒ Types::VpcConfig
A [VpcConfig] object that specifies the VPC that this training job has access to. For more information, see [Protect Training Jobs by Using an Amazon Virtual Private Cloud].
[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html
43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 43123 class TrainingJob < Struct.new( :training_job_name, :training_job_arn, :tuning_job_arn, :labeling_job_arn, :auto_ml_job_arn, :model_artifacts, :training_job_status, :secondary_status, :failure_reason, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :creation_time, :training_start_time, :training_end_time, :last_modified_time, :secondary_status_transitions, :final_metric_data_list, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :training_time_in_seconds, :billable_time_in_seconds, :debug_hook_config, :experiment_config, :debug_rule_configurations, :tensor_board_output_config, :debug_rule_evaluation_statuses, :profiler_config, :environment, :retry_strategy, :tags) SENSITIVE = [] include Aws::Structure end |