Class: Aws::SageMaker::Types::RecommendationJobContainerConfig
- Inherits:
-
Struct
- Object
- Struct
- Aws::SageMaker::Types::RecommendationJobContainerConfig
- Includes:
- Aws::Structure
- Defined in:
- lib/aws-sdk-sagemaker/types.rb
Overview
Specifies mandatory fields for running an Inference Recommender job directly in the [CreateInferenceRecommendationsJob] API. The fields specified in ‘ContainerConfig` override the corresponding fields in the model package. Use `ContainerConfig` if you want to specify these fields for the recommendation job but don’t want to edit them in your model package.
[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html
Constant Summary collapse
- SENSITIVE =
[]
Instance Attribute Summary collapse
-
#data_input_config ⇒ String
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form.
-
#domain ⇒ String
The machine learning domain of the model and its components.
-
#framework ⇒ String
The machine learning framework of the container image.
-
#framework_version ⇒ String
The framework version of the container image.
-
#nearest_model_name ⇒ String
The name of a pre-trained machine learning model benchmarked by Amazon SageMaker Inference Recommender that matches your model.
-
#payload_config ⇒ Types::RecommendationJobPayloadConfig
Specifies the ‘SamplePayloadUrl` and all other sample payload-related fields.
-
#supported_endpoint_type ⇒ String
The endpoint type to receive recommendations for.
-
#supported_instance_types ⇒ Array<String>
A list of the instance types that are used to generate inferences in real-time.
-
#supported_response_mime_types ⇒ Array<String>
The supported MIME types for the output data.
-
#task ⇒ String
The machine learning task that the model accomplishes.
Instance Attribute Details
#data_input_config ⇒ String
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This field is used for optimizing your model using SageMaker Neo. For more information, see [DataInputConfig].
38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 38631 class RecommendationJobContainerConfig < Struct.new( :domain, :task, :framework, :framework_version, :payload_config, :nearest_model_name, :supported_instance_types, :supported_endpoint_type, :data_input_config, :supported_response_mime_types) SENSITIVE = [] include Aws::Structure end |
#domain ⇒ String
The machine learning domain of the model and its components.
Valid Values: ‘COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING`
38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 38631 class RecommendationJobContainerConfig < Struct.new( :domain, :task, :framework, :framework_version, :payload_config, :nearest_model_name, :supported_instance_types, :supported_endpoint_type, :data_input_config, :supported_response_mime_types) SENSITIVE = [] include Aws::Structure end |
#framework ⇒ String
The machine learning framework of the container image.
Valid Values: ‘TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN`
38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 38631 class RecommendationJobContainerConfig < Struct.new( :domain, :task, :framework, :framework_version, :payload_config, :nearest_model_name, :supported_instance_types, :supported_endpoint_type, :data_input_config, :supported_response_mime_types) SENSITIVE = [] include Aws::Structure end |
#framework_version ⇒ String
The framework version of the container image.
38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 38631 class RecommendationJobContainerConfig < Struct.new( :domain, :task, :framework, :framework_version, :payload_config, :nearest_model_name, :supported_instance_types, :supported_endpoint_type, :data_input_config, :supported_response_mime_types) SENSITIVE = [] include Aws::Structure end |
#nearest_model_name ⇒ String
The name of a pre-trained machine learning model benchmarked by Amazon SageMaker Inference Recommender that matches your model.
Valid Values: ‘efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet`
38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 38631 class RecommendationJobContainerConfig < Struct.new( :domain, :task, :framework, :framework_version, :payload_config, :nearest_model_name, :supported_instance_types, :supported_endpoint_type, :data_input_config, :supported_response_mime_types) SENSITIVE = [] include Aws::Structure end |
#payload_config ⇒ Types::RecommendationJobPayloadConfig
Specifies the ‘SamplePayloadUrl` and all other sample payload-related fields.
38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 38631 class RecommendationJobContainerConfig < Struct.new( :domain, :task, :framework, :framework_version, :payload_config, :nearest_model_name, :supported_instance_types, :supported_endpoint_type, :data_input_config, :supported_response_mime_types) SENSITIVE = [] include Aws::Structure end |
#supported_endpoint_type ⇒ String
The endpoint type to receive recommendations for. By default this is null, and the results of the inference recommendation job return a combined list of both real-time and serverless benchmarks. By specifying a value for this field, you can receive a longer list of benchmarks for the desired endpoint type.
38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 38631 class RecommendationJobContainerConfig < Struct.new( :domain, :task, :framework, :framework_version, :payload_config, :nearest_model_name, :supported_instance_types, :supported_endpoint_type, :data_input_config, :supported_response_mime_types) SENSITIVE = [] include Aws::Structure end |
#supported_instance_types ⇒ Array<String>
A list of the instance types that are used to generate inferences in real-time.
38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 38631 class RecommendationJobContainerConfig < Struct.new( :domain, :task, :framework, :framework_version, :payload_config, :nearest_model_name, :supported_instance_types, :supported_endpoint_type, :data_input_config, :supported_response_mime_types) SENSITIVE = [] include Aws::Structure end |
#supported_response_mime_types ⇒ Array<String>
The supported MIME types for the output data.
38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 38631 class RecommendationJobContainerConfig < Struct.new( :domain, :task, :framework, :framework_version, :payload_config, :nearest_model_name, :supported_instance_types, :supported_endpoint_type, :data_input_config, :supported_response_mime_types) SENSITIVE = [] include Aws::Structure end |
#task ⇒ String
The machine learning task that the model accomplishes.
Valid Values: ‘IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER`
38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 38631 class RecommendationJobContainerConfig < Struct.new( :domain, :task, :framework, :framework_version, :payload_config, :nearest_model_name, :supported_instance_types, :supported_endpoint_type, :data_input_config, :supported_response_mime_types) SENSITIVE = [] include Aws::Structure end |