Class: Aws::SageMaker::Types::CreateLabelingJobRequest

Inherits:
Struct
  • Object
show all
Includes:
Aws::Structure
Defined in:
lib/aws-sdk-sagemaker/types.rb

Overview

Constant Summary collapse

SENSITIVE =
[]

Instance Attribute Summary collapse

Instance Attribute Details

#human_task_configTypes::HumanTaskConfig

Configures the labeling task and how it is presented to workers; including, but not limited to price, keywords, and batch size (task count).



7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
# File 'lib/aws-sdk-sagemaker/types.rb', line 7723

class CreateLabelingJobRequest < Struct.new(
  :labeling_job_name,
  :label_attribute_name,
  :input_config,
  :output_config,
  :role_arn,
  :label_category_config_s3_uri,
  :stopping_conditions,
  :labeling_job_algorithms_config,
  :human_task_config,
  :tags)
  SENSITIVE = []
  include Aws::Structure
end

#input_configTypes::LabelingJobInputConfig

Input data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.

You must specify at least one of the following: ‘S3DataSource` or `SnsDataSource`.

  • Use ‘SnsDataSource` to specify an SNS input topic for a streaming labeling job. If you do not specify and SNS input topic ARN, Ground Truth will create a one-time labeling job that stops after all data objects in the input manifest file have been labeled.

  • Use ‘S3DataSource` to specify an input manifest file for both streaming and one-time labeling jobs. Adding an `S3DataSource` is optional if you use `SnsDataSource` to create a streaming labeling job.

If you use the Amazon Mechanical Turk workforce, your input data should not include confidential information, personal information or protected health information. Use ‘ContentClassifiers` to specify that your data is free of personally identifiable information and adult content.



7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
# File 'lib/aws-sdk-sagemaker/types.rb', line 7723

class CreateLabelingJobRequest < Struct.new(
  :labeling_job_name,
  :label_attribute_name,
  :input_config,
  :output_config,
  :role_arn,
  :label_category_config_s3_uri,
  :stopping_conditions,
  :labeling_job_algorithms_config,
  :human_task_config,
  :tags)
  SENSITIVE = []
  include Aws::Structure
end

#label_attribute_nameString

The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The ‘LabelAttributeName` must meet the following requirements.

  • The name can’t end with “-metadata”.

  • If you are using one of the following [built-in task types], the attribute name must end with “-ref”. If the task type you are using is not listed below, the attribute name *must not* end with “-ref”.

    • Image semantic segmentation (‘SemanticSegmentation)`, and adjustment (`AdjustmentSemanticSegmentation`) and verification (`VerificationSemanticSegmentation`) labeling jobs for this task type.

    • Video frame object detection (‘VideoObjectDetection`), and adjustment and verification (`AdjustmentVideoObjectDetection`) labeling jobs for this task type.

    • Video frame object tracking (‘VideoObjectTracking`), and adjustment and verification (`AdjustmentVideoObjectTracking`) labeling jobs for this task type.

    • 3D point cloud semantic segmentation (‘3DPointCloudSemanticSegmentation`), and adjustment and verification (`Adjustment3DPointCloudSemanticSegmentation`) labeling jobs for this task type.

    • 3D point cloud object tracking (‘3DPointCloudObjectTracking`), and adjustment and verification (`Adjustment3DPointCloudObjectTracking`) labeling jobs for this task type.

If you are creating an adjustment or verification labeling job, you must use a different ‘LabelAttributeName` than the one used in the original labeling job. The original labeling job is the Ground Truth labeling job that produced the labels that you want verified or adjusted. To learn more about adjustment and verification labeling jobs, see [Verify and Adjust Labels].

[1]: docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/sms-verification-data.html

Returns:

  • (String)


7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
# File 'lib/aws-sdk-sagemaker/types.rb', line 7723

class CreateLabelingJobRequest < Struct.new(
  :labeling_job_name,
  :label_attribute_name,
  :input_config,
  :output_config,
  :role_arn,
  :label_category_config_s3_uri,
  :stopping_conditions,
  :labeling_job_algorithms_config,
  :human_task_config,
  :tags)
  SENSITIVE = []
  include Aws::Structure
end

#label_category_config_s3_uriString

The S3 URI of the file, referred to as a *label category configuration file*, that defines the categories used to label the data objects.

For 3D point cloud and video frame task types, you can add label category attributes and frame attributes to your label category configuration file. To learn how, see [Create a Labeling Category Configuration File for 3D Point Cloud Labeling Jobs].

For named entity recognition jobs, in addition to ‘“labels”`, you must provide worker instructions in the label category configuration file using the `“instructions”` parameter: `“instructions”: header</h1><p>Add Instructions</p>”, “fullInstruction”:“<p>Add additional instructions.</p>”`. For details and an example, see [Create a Named Entity Recognition Labeling Job (API) ][2].

For all other [built-in task types] and [custom tasks], your label category configuration file must be a JSON file in the following format. Identify the labels you want to use by replacing ‘label_1`, `label_2`,`…`,`label_n` with your label categories.

‘{ `

‘“document-version”: “2018-11-28”,`

‘“labels”: [“label_1”,“label_2”,…“label_n”]`

‘}`

Note the following about the label category configuration file:

  • For image classification and text classification (single and multi-label) you must specify at least two label categories. For all other task types, the minimum number of label categories required is one.

  • Each label category must be unique, you cannot specify duplicate label categories.

  • If you create a 3D point cloud or video frame adjustment or verification labeling job, you must include ‘auditLabelAttributeName` in the label category configuration. Use this parameter to enter the [ `LabelAttributeName` ][5] of the labeling job you want to adjust or verify annotations of.

[1]: docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-label-category-config.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/sms-named-entity-recg.html#sms-creating-ner-api [3]: docs.aws.amazon.com/sagemaker/latest/dg/sms-task-types.html [4]: docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates.html [5]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateLabelingJob.html#sagemaker-CreateLabelingJob-request-LabelAttributeName

Returns:

  • (String)


7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
# File 'lib/aws-sdk-sagemaker/types.rb', line 7723

class CreateLabelingJobRequest < Struct.new(
  :labeling_job_name,
  :label_attribute_name,
  :input_config,
  :output_config,
  :role_arn,
  :label_category_config_s3_uri,
  :stopping_conditions,
  :labeling_job_algorithms_config,
  :human_task_config,
  :tags)
  SENSITIVE = []
  include Aws::Structure
end

#labeling_job_algorithms_configTypes::LabelingJobAlgorithmsConfig

Configures the information required to perform automated data labeling.



7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
# File 'lib/aws-sdk-sagemaker/types.rb', line 7723

class CreateLabelingJobRequest < Struct.new(
  :labeling_job_name,
  :label_attribute_name,
  :input_config,
  :output_config,
  :role_arn,
  :label_category_config_s3_uri,
  :stopping_conditions,
  :labeling_job_algorithms_config,
  :human_task_config,
  :tags)
  SENSITIVE = []
  include Aws::Structure
end

#labeling_job_nameString

The name of the labeling job. This name is used to identify the job in a list of labeling jobs. Labeling job names must be unique within an Amazon Web Services account and region. ‘LabelingJobName` is not case sensitive. For example, Example-job and example-job are considered the same labeling job name by Ground Truth.

Returns:

  • (String)


7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
# File 'lib/aws-sdk-sagemaker/types.rb', line 7723

class CreateLabelingJobRequest < Struct.new(
  :labeling_job_name,
  :label_attribute_name,
  :input_config,
  :output_config,
  :role_arn,
  :label_category_config_s3_uri,
  :stopping_conditions,
  :labeling_job_algorithms_config,
  :human_task_config,
  :tags)
  SENSITIVE = []
  include Aws::Structure
end

#output_configTypes::LabelingJobOutputConfig

The location of the output data and the Amazon Web Services Key Management Service key ID for the key used to encrypt the output data, if any.



7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
# File 'lib/aws-sdk-sagemaker/types.rb', line 7723

class CreateLabelingJobRequest < Struct.new(
  :labeling_job_name,
  :label_attribute_name,
  :input_config,
  :output_config,
  :role_arn,
  :label_category_config_s3_uri,
  :stopping_conditions,
  :labeling_job_algorithms_config,
  :human_task_config,
  :tags)
  SENSITIVE = []
  include Aws::Structure
end

#role_arnString

The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.

Returns:

  • (String)


7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
# File 'lib/aws-sdk-sagemaker/types.rb', line 7723

class CreateLabelingJobRequest < Struct.new(
  :labeling_job_name,
  :label_attribute_name,
  :input_config,
  :output_config,
  :role_arn,
  :label_category_config_s3_uri,
  :stopping_conditions,
  :labeling_job_algorithms_config,
  :human_task_config,
  :tags)
  SENSITIVE = []
  include Aws::Structure
end

#stopping_conditionsTypes::LabelingJobStoppingConditions

A set of conditions for stopping the labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.



7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
# File 'lib/aws-sdk-sagemaker/types.rb', line 7723

class CreateLabelingJobRequest < Struct.new(
  :labeling_job_name,
  :label_attribute_name,
  :input_config,
  :output_config,
  :role_arn,
  :label_category_config_s3_uri,
  :stopping_conditions,
  :labeling_job_algorithms_config,
  :human_task_config,
  :tags)
  SENSITIVE = []
  include Aws::Structure
end

#tagsArray<Types::Tag>

An array of key/value pairs. For more information, see [Using Cost Allocation Tags] in the *Amazon Web Services Billing and Cost Management User Guide*.

[1]: docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what

Returns:



7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
# File 'lib/aws-sdk-sagemaker/types.rb', line 7723

class CreateLabelingJobRequest < Struct.new(
  :labeling_job_name,
  :label_attribute_name,
  :input_config,
  :output_config,
  :role_arn,
  :label_category_config_s3_uri,
  :stopping_conditions,
  :labeling_job_algorithms_config,
  :human_task_config,
  :tags)
  SENSITIVE = []
  include Aws::Structure
end